用户名: 密码: 验证码:
高分子囊泡渗透性与微结构协同调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cooperative Modulation of Bilayer Permeability and Microstructures of Polymersomes
  • 作者:姚陈志 ; 汪枭睿 ; 胡进明 ; 刘世勇
  • 英文作者:Chen-zhi Yao;Xiao-rui Wang;Jin-ming Hu;Shi-yong Liu;CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China;
  • 关键词:无痕交联 ; 高分子囊泡 ; 稳定性 ; 渗透性 ; 协同调控
  • 英文关键词:Traceless cross-linking;;Polymersomes;;Stability;;Permeability;;Synergistic modulation
  • 中文刊名:高分子学报
  • 英文刊名:Acta Polymerica Sinica
  • 机构:中国科学院软物质化学重点实验室中国科学技术大学高分子科学与工程系;
  • 出版日期:2019-04-26 16:59
  • 出版单位:高分子学报
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金(基金号51690150,51690154,21674103,51722307,51673179);; 国家重点研发计划“政府间国际科技创新合作”重点专项(项目号2016YFE0129700)资助项目
  • 语种:中文;
  • 页:21-34
  • 页数:14
  • CN:11-1857/O6
  • ISSN:1000-3304
  • 分类号:TQ317
摘要
高分子囊泡通常由疏水的双层膜包覆亲水的空腔构成.这种独特的形貌使得高分子囊泡被广泛地用于构筑人工细胞(器)、纳米反应器和药物递送载体.为了实现这些功能应用,调控高分子囊泡双层膜的渗透性并保持囊泡结构的稳定性极为重要.然而传统调控囊泡渗透性的方法步骤相对繁琐、常导致组装体的解离.本文总结了我们近期在协同调控高分子囊泡稳定性和渗透性方面的研究进展.首先,提出了"无痕"交联的策略并实现了高分子囊泡渗透性和稳定性的协同增强.其次,利用多重协同非共价键相互作用,实现了高分子囊泡渗透性的可逆调节.这些新型的调控策略解决了高分子囊泡结构稳定性和渗透性的矛盾并展现了良好的应用前景.
        Polymersomes, also referred to as polymer vesicles, are self-assembled from amphiphilic synthetic polymers, representing a type of hollow nanostructures containing aqueous lumens enclosed by bilayer membranes. This unique hollow and compartmentalized structure has been extensively used in the fabrication of artificial cells, drug carriers, and nanoreactors. Albeit more stable than liposomes, polymersomes exhibit relatively low permeability toward macromolecules, small molecules, ions, and even water molecules. This drawback remarkably hampers the biomedical applications of polymersomes. Thus, it is of crucial importance to regulate the permeability of polymersomes while maintaining structural integrity. Although a number of methods have been proposed to enhance the permeability of polymersomes such as the fabrication of stimuli-responsive polymersomes and the introduction of channel proteins, these procedures suffer from either tedious protocols or disruption of the vesicular structures. In this feature article, we summarize our recent achievements in the(ir)reversible regulation of the permeability of polymersomes. First, we conceived a new concept, termed as"traceless" cross-linking, to synergistically stabilize and permeate polymersomes. This concept originates from photoresponsive polymersomes, in which we found that the photo-caged primary amines underwent inter/intrachain amidation reactions other than protonation reactions within the initially hydrophobic bilayer membranes. Moreover, this robust strategy can be readily extended to other bio-related triggering events such as enzyme and redox. Notably, "traceless " cross-linking generally led to irreversible chemical cross-linking of polymersomes. Thus, in the following section, we showcased the representative examples in reversible modulation the permeability of polymersomes by taking advantage of cooperative noncovalent interactions. These new methodologies successfully resolve the dilemma of the structural stability and bilayer permeability of polymersomes and can be used for the fabrication of smart nanocarriers and nanoreactors. Finally, we give a brief summary and outlook of this emerging field.
引文
1 Hill J P,Jin W S,Kosaka A,Fukushima T,Ichihara H,Shimomura T,Ito K,Hashizume T,Ishii N,Aida T.Science,2004,304(5676):1481-1483
    2 Hartgerink J D,Beniash E,Stupp S I.Science,2001,294(5547):1684-1688
    3 Marguet M,Bonduelle C,Lecommandoux S.Chem Soc Rev,2013,42(2):512-529
    4 Checot F,Lecommandoux S,Gnanou Y,Klok H A.Angew Chem Int Ed,2002,41(8):1339-1343
    5 Vanhest J C M,Delnoye D A P,Baars M W P L,Vangenderen M H P,Meijer E W.Science,1995,268(5217):1592-1595
    6 Du J Z,O’Reilly R K.Chem Soc Rev,2011,40(5):2402-2416
    7 Zhu J H,Zhang S Y,Zhang K,Wang X J,Mays J W,Wooley K L,Pochan D J.Nat Commun,2013,4:2297
    8 Li Yaming(李亚明),Liu Shiyong(刘世勇).Acta Polymerica Sinica(高分子学报),2017,(7):1178-1190
    9 Bai Y,Xie F Y,Tian W.Chinese J Polym Sci,2018,36(3):406-416
    10 Chen S L,Shi P F,Zhang W Q.Chinese J Polym Sci,2017,35(4):455-479
    11 Feng X R,Ding J X,Gref R,Chen X S.Chinese J Polym Sci,2017,35(6):693-699
    12 Gan Y A,Wang Z D,Lu Z X,Shi Y,Tan H Y,Yan C F.Chinese J Polym Sci,2018,36(6):728-735
    13 Jing X W,Huang Z Y,Lu H S,Wang B G.Chinese J Polym Sci,2018,36(1):18-24
    14 Li X X,Huo X,Han H J,Lin S L.Chinese J Polym Sci,2017,35(11):1363-1372
    15 Liu D,Wang Y Y,Sun Y C,Han Y Y,Cui J,Jiang W.Chinese J Polym Sci,2018,36(7):888-896
    16 Lu B B,Wei L L,Meng G H,Hou J,Liu Z Y,Guo X H.Chinese J Polym Sci,2017,35(8):924-938
    17 Lu X J,Yang X Y,Meng Y,Li S Z.Chinese J Polym Sci,2017,35(4):534-546
    18 Lyu X L,Pan H B,Shen Z H,Fan X H.Chinese J Polym Sci,2018,36(7):811-821
    19 Meng F D,Ni Y X,Ji S F,Fu X H,Wei Y H,Sun J,Li Z B.Chinese J Polym Sci,2017,35(10):1243-1252
    20 Xu M M,Liu R J,Yan Q.Chinese J Polym Sci,2018,36(3):347-365
    21 Xu Y L,Qu A T,Ma R J,Li A,Zhang Z K,Shang Z Q,Zhang Y F,Bu L X,An Y L.Chinese J Polym Sci,2018,36(11):1262-1268
    22 Zhang W M,Zhang J,Qiao Z,Yin J.Chinese J Polym Sci,2018,36(3):273-287
    23 Zheng C X,Zhao Y,Liu Y.Chinese J Polym Sci,2018,36(3):322-346
    24 Wang X R,Liu G H,Hu J M,Zhang G Y,Liu S Y.Angew Chem Int Ed,2014,53(12):3138-3142
    25 Discher D E,Ortiz V,Srinivas G,Klein M L,Kim Y,David C A,Cai S S,Photos P,Ahmed F.Prog Polym Sci,2007,32(8-9):838-857
    26 Meng F H,Zhong Z Y,Feijen J.Biomacromolecules,2009,10(2):197-209
    27 Wang F Y K,Xiao J G,Chen S,Sun H,Yang B,Jiang J H,Zhou X,Du J Z.Adv Mater,2018,30(17):1705674
    28 Xiao Y F,Sung H,Du J Z.J Am Chem Soc,2017,139(22):7640-7647
    29 Wilson D A,Nolte R J M,van Hest J C M.Nat Chem,2012,4(4):268-274
    30 Vriezema D M,Garcia P M L,Oltra N S,Hatzakis N S,Kuiper S M,Nolte R J M,Rowan A E,van Hest J C M.Angew Chem Int Ed,2007,46(39):7378-7382
    31 Wang X R,Hu J M,Liu G H,Tian J,Wang H J,Gong M,Liu S Y.J Am Chem Soc,2015,137(48):15262-15275
    32 Yao C,Wang X,Liu G,Hu J,Liu S.Macromolecules,2016,49(21):8282-8295
    33 Zhu K,Liu G,Zhang G,Hu J,Liu S.Macromolecules,2018,51(21):8530-8538
    34 Sun Z,Liu G,Hu J,Liu S.Biomacromolecules,2018,19(6):2071-2081
    35 Tanner P,Baumann P,Enea R,Onaca O,Palivan C,Meier W.Acc Chem Res,2011,44(10):1039-1049
    36 Bian B,Zhang Y Y,Dong Y C,Wu F,Wang C,Wang S,Xu Y,Liu D S.Sci China Chem,2018,61(12):1568-1571
    37 Wu S X,Li J,Liang H,Wang L P,Chen X,Jin G X,Xu X P,Yang H H.Sci China Chem,2017,60(5):628-634
    38 Xiao J G,Hu Y,Du J Z.Sci China Chem,2018,61(5):569-575
    39 Yang S,Luan Z L,Gao C,Yu J J,Qu D H.Sci China Chem,2018,61(3):306-310
    40 Zhang Y Y,Li M,Li Z H,Li Q,Aldalbahi A,Shi J Y,Wang L H,Fan C H,Zuo X L.Sci China Chem,2017,60(11):1474-1480
    41 Zhou Y B,Liu H X,Zhao N,Wang Z M,Michael M Z,Xie N,Tang B Z,Tang Y H.Sci China Chem,2018,61(8):892-897
    42 Discher D E,Eisenberg A.Science,2002,297(5583):967-973
    43 Broz P,Driamov S,Ziegler J,Ben-Haim N,Marsch S,Meier W,Hunziker P.Nano Lett,2006,6(10):2349-2353
    44 Kim K T,Cornelissen J J L M,Nolte R J M,van Hest J C M.Adv Mater,2009,21(27):2787-2791
    45 Amstad E,Kim S H,Weitz D A.Angew Chem Int Ed,2012,51(50):12499-12503
    46 Hu J M,Zhang G Q,Liu S Y.Chem Soc Rev,2012,41(18):5933-5949
    47 Yan Q,Wang J B,Yin Y W,Yuan J Y.Angew Chem Int Ed,2013,52(19):5070-5073
    48 Koide A,Kishimura A,Osada K,Jang W D,Yamasaki Y,Kataoka K.J Am Chem Soc,2006,128(18):5988-5989
    49 Spulber M,Najer A,Winkelbach K,Glaied O,Waser M,Pieles U,Meier W,Bruns N.J Am Chem Soc,2013,135(24):9204-9212
    50 Chambon P,Blanazs A,Battaglia G,Armes S P.Langmuir,2012,28(2):1196-1205
    51 Read E S,Armes S P.Chem Commun,2007,43(29):3021-3035
    52 Habault D,Zhang H J,Zhao Y.Chem Soc Rev,2013,42(17):7244-7256
    53 Zhu K,Deng Z,Liu G,Hu J,Liu S.Macromolecules,2017,50(3):1113-1125
    54 Deng H,Zhong Y,Du M,Liu Q,Fan Z,Dai F,Zhang X.Theranostics,2014,4(9):904-918
    55 He J,Huang X,Li Y C,Liu Y,Babu T,Aronova M A,Wang S,Lu Z,Chen X,Nie Z.J Am Chem Soc,2013,135(21):7974-7984
    56 Huang P,Lin J,Li W,Rong P,Wang Z,Wang S,Wang X,Sun X,Aronova M,Niu G,Leapman R D,Nie Z,Chen X. Angew Chem Int Ed,2013,52(52):13958-13964
    57 Wang C,Zhang G Y,Liu G H,Hu J M,Liu S Y.J Control Release,2017:259149-159
    58 Marguet M,Sandre O,Lecommandoux S.Langmuir,2012,28(4):2035-2043
    59 Xu W,Ledin P A,Iatridi Z,Tsitsilianis C,Tsukruk V V.Angew Chem Int Ed,2016,55(16):4908-4913
    60 Li Y M,Liu G H,Wang X R,Hu J M,Liu S Y.Angew Chem Int Ed,2016,55(5):1760-1764
    61 Ding Y,Kang Y T,Zhang X.Chem Commun,2015,51(6):996-1003
    62 Hotamisligil G S.Nature,2006,444(7121):860-867
    63 Circu M L,Aw T Y.Free Radical Biol Med,2010,48(6):749-762
    64 Deng Z,Qian Y,Yu Y,Liu G,Hu J,Zhang G,Liu S.J Am Chem Soc,2016,138(33):10452-10466
    65 Cheng R,Feng F,Meng F H,Deng C,Feijen J,Zhong Z Y.J Control Release,2011,152(1):2-12
    66 Deng Z Y,Yuan S,Xu R X,Liang H J,Liu S Y.Angew Chem Int Ed,2018,57(29):8896-8900
    67 Che H L,van Hest J C M.J Mater Chem,2016,4(27):4632-4647
    68 Che H L,Cao S P,van Hest J C M.J Am Chem Soc,2018,140(16):5356-5359
    69 Yan Q,Zhou R,Fu C K,Zhang H J,Yin Y W,Yuan J Y.Angew Chem Int Ed,2011,50(21):4923-4927
    70 Feng A C,Zhan C B,Yan Q,Liu B W,Yuan J Y.Chem Commun,2014,50(64):8958-8961
    71 Hu X L,Zhai S D,Liu G H,Xing D,Liang H J,Liu S Y.Adv Mater,2018,30(21):1706307
    72 Liu G H,Shi G H,Sheng H Y,Jiang Y Y,Liang H J,Liu S Y.Angew Chem Int Ed,2017,56(30):8686-8691
    73 Liu G H,Zhang G F,Hu J M,Wang X R,Zhu M Q,Liu S Y.J Am Chem Soc,2015,137(36):11645-11655
    74 Hu X L,Liu G H,Li Y,Wang X R,Liu S Y.J Am Chem Soc,2015,137(1):362-368
    75 Liu G H,Wang X R,Hu J M,Zhang G Y,Liu S Y.J Am Chem Soc,2014,136(20):7492-7497

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700