用户名: 密码: 验证码:
家畜圈舍粪尿表层酸化对氨气排放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of surface acidification of manure on ammonia emission in animal housing
  • 作者:刘娟 ; 柏兆海 ; 曹玉博 ; 张楠楠 ; 赵占轻 ; 马林
  • 英文作者:LIU Juan;BAI Zhaohai;CAO Yubo;ZHANG Nannan;ZHAO Zhanqing;MA Lin;Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Key Laboratory of Soil Ecology/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Land Resources and Urban & Rural Planning, Hebei GEO University;
  • 关键词:粪尿pH ; 氨挥发 ; 家畜粪尿 ; 养殖圈舍 ; 氨减排 ; 粪尿表面酸化
  • 英文关键词:Manure pH;;Ammonia emission;;Animal manure;;Animal housing;;Ammonia emission reduction;;Manure surface acidification
  • 中文刊名:中国生态农业学报(中英文)
  • 英文刊名:Chinese Journal of Eco-Agriculture
  • 机构:中国科学院遗传与发育生物学研究所农业资源研究中心/河北省土壤生态学重点实验室/中国科学院农业水资源重点实验室;中国科学院大学;河北地质大学土地资源与城乡规划学院;
  • 出版日期:2019-05-15
  • 出版单位:中国生态农业学报(中英文)
  • 年:2019
  • 期:05
  • 基金:国家重点研发计划项目(2018YFC0213300);; 国家自然科学基金项目(31872403,31801941);; 大气重污染成因与治理攻关项目(DQGG0208);; 中国科学院重点部署项目(ZDRW-ZS-2016-5);中国科学院STS项目(KFJ-STS-ZDTP-053);中国科学院百人计划项目;; 河北省杰出青年基金项目(D2017503023);; 河北省现代农业产业技术体系奶牛产业创新团队项目(HBCT2018120206)资助~~
  • 语种:中文;
  • 页:17-25
  • 页数:9
  • CN:13-1432/S
  • ISSN:2096-6237
  • 分类号:X511;X713
摘要
氨气是形成雾霾前体物的关键物质,而家畜养殖圈舍是氨气的重要排放源。本文选择圈舍环节新鲜猪粪和牛粪作为试验样品,利用动态箱-硼酸吸收法,研究了不同类型酸和不同剂量酸的表层酸化对圈舍粪尿氨排放的影响,探讨圈舍氨减排的方法。研究发现:按0.31mL×cm~(-2)的喷施量在猪粪表层喷施0.012mol×L~(-1)和0.006mol×L~(-1)乳酸,24h氨累积排放量可分别减少43%(P<0.05)和32%(P=0.07);喷施0.017mol×L~(-1)和0.009mol×L~(-1)磷酸后,氨排放可分别减少74%(P<0.01)和61%(P<0.05);粪尿表面喷洒0.017 mol×L~(-1)磷酸72 h后仍可减少氨排放64%(P<0.01)。另外,用同样方法对牛粪酸化可降低氨排放80%左右,且在不添加新粪的情况下,粪尿表层酸化间隔对24 h内氨减排效率无显著影响。同时,粪尿表面酸化仅改变粪尿表层pH,对粪尿整体pH无显著影响。综上所述:圈舍粪尿表面酸化可以大幅度降低氨气挥发,其减排效果与酸的种类、浓度及粪尿类型有关,是一种实现圈舍氨减排且经济可行的方法,此研究也可为家畜养殖业圈舍酸化氨减排技术提供科学数据支撑。
        Ammonia is a key substance in the formation of haze precursors, and livestock pen is one of the main sources of ammonia emission. Here, we selected fresh cow and sow manure to evaluate the impacts of surface acidification on ammonia emission under simulated livestock pen conditions with different acids of different concentrations. Acid solution was sprayed on the surface of the manure to acidify the manure surface. Ammonia emission was measured using the dynamic boric acid trap method. Our results revealed that when lactic acid was diluted to 0.012 mol×L~(-1) and 0.006 mol×L~(-1) and applied on the surface of manure at the rate of 0.31 m L×cm~(-2), ammonia emission from sow manure reduced respectively by 43%(P < 0.05) and 32%(P = 0.07) in 24 h, compared with the control treatment. Ammonia emission reduced by 74%(P < 0.01) and 61%(P < 0.05) respectively for 0.017 mol×L~(-1) and 0.009 mol×L~(-1) of diluted phosphoric acids. Ammonia emission of sow manure reduced by 64%(P < 0.01) within 72 h treatment of 0.017 mol×L~(-1) phosphoric acid. Using the same treatment method as before, surface acidification of cow manure reduced ammonia emission by 80% compared with control treatment. The frequency of acid addition to manure surface had no significant impact on ammonia emission mitigation when manure was not refreshed. Surface acidification lowered manure pH, but with no significant impact on the whole manure. Overall, surface acidification reduced ammonia emission in animal pens. The reduction efficiency depended not only on the type and concentration of acid, but also on the type of manure. Surface acidification of manure was a cost-effective ammonia abatement technique. This study also supported the increasing understanding of manure acidification technology aimed at reducing ammonia emission from animal pens.
引文
[1]BOUWMAN A F,Lee D S,ASMAN W A H,et al.A global high-resolution emission inventory for ammonia[J].Global Biogeochemical Cycles,1997,11(4):561-587
    [2]REIS S,HOWARD C,SUTTON M A.Costs of Ammonia Abatement and the Climate Co-Benefits[M].Netherlands:Springer,2015
    [3]GU B J,GE Y,REN Y,et al.Atmospheric reactive nitrogen in China:Sources,recent trends,and damage costs[J].Environmental Science&Technology,2012,46(17):9420-9427
    [4]GU B J,JU X T,CHANG J,et al.Integrated reactive nitrogen budgets and future trends in China[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(28):8792-8797
    [5]PAULOT F,JACOB D J,PINDER R W,et al.Ammonia emissions in the United States,European Union,and China derived by high-resolution inversion of ammonium wet deposition data:Interpretation with a new agricultural emissions inventory(MASAGE_NH3)[J].Journal of Geophysical Research:Atmospheres,2014,119(7):4343-4364
    [6]NDEGWA P M,HRISTOV A N,AROGO J,et al.A review of ammonia emission mitigation techniques for concentrated animal feeding operations[J].Biosystems Engineering,2008,100(4):453-469
    [7]STEVENS C J,DISE N B,MOUNTFORD J O,et al.Impact of nitrogen deposition on the species richness of grasslands[J].Science,2004,303(5665):1876-1879
    [8]SUTTON M A,HOWARD C M,ERISMAN J W,et al.The European Nitrogen Assessment:Sources,Effects and Policy Perspectives[M].New York:Cambridge University Press,2011:1-5
    [9]GALLOWAY J N,ABER J D,ERISMAN J W,et al.The nitrogen cascade[J].Bioscience,2003,53(4):341-356
    [10]MORSE D.Impact of environmental regulations on cattle production[J].Journal of Animal Science,1996,74(12):3103-3011
    [11]JASON WEST J,ANSARI A S,PANDIS S N.Marginal PM25:Nonlinear aerosol mass response to sulfate reductions in the eastern united states[J].Journal of the Air&Waste Management Association,1999,49(12):1415-1424
    [12]韦莲芳,段菁春,谭吉华,等.北京春季大气中氨的气粒相转化及颗粒态铵采样偏差研究[J].中国科学:地球科学,2015,45(2):216-226WEI L F,DUAN J C,TAN J H,et al.Gas-to-particle conversion of atmospheric ammonia and sampling artifacts of ammonium in spring of Beijing[J].Science China:Earth Sciences,2015,45(2):216-226
    [13]曹玉博,邢晓旭,柏兆海,等.农牧系统氨挥发减排技术研究进展[J].中国农业科学,2018,51(3):566-580CAO Y B,XING X X,BAI Z H,et al.Review on ammonia emission mitigation techniques of crop-livestock production system[J].Scientia Agricultura Sinica,2018,56(3):566-580
    [14]PETERSEN V,MARKFOGED R,HAFNER S D,et al.A new slurry pH model accounting for effects of ammonia and carbon dioxide volatilization on solution speciation[J].Nutrient Cycling in Agroecosystems,2014,100(2):189-204
    [15]SOMMER S G,CLOUGH T J,BALAINE N,et al.Transformation of organic matter and the emissions of methane and ammonia during storage of liquid manure as affected by acidification[J].Journal of Environmental Quality,2017,46(3):514-521
    [16]SHI Y,PARKER D B,COLE N A,et al.Surface amendments to minimize ammonia emissions from beef cattle feedlots[J].Transactions of the American Society of Agricultural Engineers,2001,44(3):677-682
    [17]PAIN B F,MISSELBROOK T H,REES Y J.Effects of nitrification inhibitor and acid addition to cattle slurry on nitrogen losses and herbage yields[J].Grass and Forage Science,1994,49(2):209-215
    [18]KAI P,PEDERSEN P,JENSEN J E,et al.A whole-farm assessment of the efficacy of slurry acidification in reducing ammonia emissions[J].European Journal of Agronomy,2008,28(2):148-154
    [19]HUSTED S,JENSEN L S,J?RGENSEN S S.Reducing ammonia loss from cattle slurry by the use of acidifying additives:The role of the buffer system[J].Journal of the Science of Food and Agriculture,1991,57(3):335-349
    [20]SAFLEY J R L M,NELSON D W,WESTERMAN P W.Conserving manurial nitrogen[J].Transactions of the ASAE,1983,26(4):1166-1170
    [21]REGUEIRO I,COUTINHO J,FANGUEIRO D.Alternatives to sulfuric acid for slurry acidification:Impact on slurry composition and ammonia emissions during storage[J].Journal of Cleaner Production,2016,131:296-307
    [22]HARTUNG J,PHILLIPS V R.Control of gaseous emissions from livestock buildings and manure stores[J].Journal of Agricultural Engineering Research,1994,57(3):173-189
    [23]MOLLOY S P,TUNNEY H.A laboratory study of ammonia volatilization from cattle and pig slurry[J].Irish Journal of Agricultural Research,1983,22(1):37-45
    [24]NEERACKAL G M,NDEGWA P M,HARRISON J H,et al.Manure-pH management for mitigating ammonia emissions from dairy barns and liquid manure storages[J].Applied Engineering in Agriculture,2017,33(2):235-242
    [25]PARK S H,LEE B R,KIM T H.Effects of cattle manure and swine slurry acidification on ammonia emission as estimated by an acid trap system[J].Journal of the Korean Society of Grassland and Forage Science,2015,35(3):212-216
    [26]OWUSU-TWUM M Y,POLASTRE A,SUBEDI R,et al.Gaseous emissions and modification of slurry composition during storage and after field application:Effect of slurry additives and mechanical separation[J].Journal of Environmental Management,2017,200:416-422
    [27]AL-KANANI T,AKOCHI E,MACKENZIE A F,et al.Organic and inorganic amendments to reduce ammonia losses from liquid hog manure[J].Journal of Environmental Quality,1992,21(4):709-715
    [28]PHILIPPE F X,LAITAT M,WAVREILLE J,et al.Ammonia and greenhouse gas emission from group-housed gestating sows depends on floor type[J].Agriculture,Ecosystems&Environment,2011,140(3/4):498-505
    [29]OGINK N W M,KROODSMA W.Reduction of ammonia emission from a cow cubicle house by flushing with water or a formalin solution[J].Journal of Agricultural Engineering Research,1996,63(3):197-204
    [30]STEVENS R J,LAUGHLIN R J,FROST J P.Effects of separation,dilution,washing and acidification on ammonia volatilization from surface-applied cattle slurry[J].The Journal of Agricultural Science,1992,119(3):383-389
    [31]STEVENS R J,LAUGHLIN R J,FROST J P.Effect of acidification with sulphuric acid on the volatilization of ammonia from cow and pig slurries[J].The Journal of Agricultural Science,1989,113(3):389-395

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700