用户名: 密码: 验证码:
同心椭圆柱-纳米管结构的双重Fano共振研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Double Fano resonance in gold nanotube embedded with a concentric elliptical cylinder
  • 作者:张兴坊 ; 刘凤收 ; 闫昕 ; 梁兰菊 ; 韦德全
  • 英文作者:Zhang Xing-Fang;Liu Feng-Shou;Yan Xin;Liang Lan-Ju;Wei De-Quan;School of Opt-Electronic Engineering, Zaozhuang University;Laboratory of Optoelectronic Information Processing and Display of Shandong;
  • 关键词:局域表面等离激元 ; Fano共振 ; 纳米管 ; 时域有限差分法
  • 英文关键词:surface plasmon polariton;;Fano resonance;;nanotube;;finite difference time domain
  • 中文刊名:物理学报
  • 英文刊名:Acta Physica Sinica
  • 机构:枣庄学院光电工程学院;山东省光电信息处理与显示实验室;
  • 出版日期:2019-03-23
  • 出版单位:物理学报
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金(批准号:61701434);; 山东省自然基金(批准号:ZR2017MF005,ZR2018LF001);; 山东省高等学校科技计划(批准号:J17KA087);; 枣庄市光电信息功能材料与微纳器件重点实验室资助的课题~~
  • 语种:中文;
  • 页:192-198
  • 页数:7
  • CN:11-1958/O4
  • ISSN:1000-3290
  • 分类号:TB383.1
摘要
提出了一种同心椭圆柱-纳米管复合结构,该结构由金纳米管中内嵌椭圆形金柱构成,利用时域有限差分法分析了尺寸参数、周围环境及纳米管内核材料对该结构光学性质的影响.结果表明,调节椭圆柱芯的旋转角度可产生双重偶极-偶极Fano共振,其主要是由椭圆柱芯的纵向或横向偶极共振模式与纳米管的偶极成键和反成键模式杂化形成的超辐射成键模式和亚辐射成键模式之间的相互作用产生的,且共振特性可通过调节复合结构的尺寸参数控制,随椭圆柱长轴或短轴的增大而红移,随纳米管外径的增大或整体尺寸的减小而蓝移,当纳米管内径增大时高频Fano共振随着红移,而低频Fano共振先蓝移再红移,同时其对外界环境的变化不敏感,但对纳米管内核材料变化有着较好的响应.利用等离激元杂化理论对该现象进行了解释.这些结果可为构造其他类型的多波段Fano共振二维或三维纳米结构提供一种新的方式.
        Optical properties of the concentric composite nanostructure composed of gold nanotube around the center gold elliptical core are investigated based on the finite difference time domain method. According to the simulated absorption and scattering spectra, electric field distributions and charge distributions, we can generate double dipole-dipole Fano resonances by adjusting the angle between the elliptical cylinder core and the linearly polarized excitation light, which is due mainly to the interference between the subradiant dipole mode and the superradiant dipole mode. The narrow, low-energy subradiant mode originates from the symmetric hybrization between the longitudinal or transverse dipole mode of the elliptical cylinder core and the dipole bonding mode of the nanotube, and the broad, high-energy superradiant mode originates from the symmetric hybrization between the core's dipole mode and the nano tube's dipole antibonding mode. Moreover,the intensities and spectral positions of the two Fano resonances can be manipulated by modifying the geometric parameters of the composite structure. By increasing the semiminor axis of elliptical core, the highenergy Fano resonance red-shifts faster than the low-energy Fano resonance due to the increase of the interaction coupling between the transverse dipole mode of the core and the dipole mode of the nanotube, and becomes weaker in the scattering spectrum because of the reduced radiation intensity of the superradiant dipole mode. When the semimajor axis is changed, a similar phenomenon occurs in the low-energy Fano resonance. In addition, the two Fano resonances red-shift when outer radius of the nanotube increases, but the shift of lowfrequency and high-frequency Fano resonance are inconsistent as the inner radius of the nanotube changes. The high-frequency Fano resonance red-shifts monotonically while the low-frequency Fano resonance first blue-shifts and then red-shifts with the increase of inner radius of nanotube because the red shift of the dipole bonding nanotube mode competes with the spectral shifts induced by the diminishing hybridization between elliptical core and nanotube mode. It can also be concluded that the dipole-dipole Fano resonances become apparent and higher order Fano resonance occurs when the composite nanostructure is scaled to a larger size due to the increased radiative damping. With the core and nanotube size fixed, Fano resonance is insensitive to the change of the external environment, but has a good response to the nuclear material of the nanotube.
引文
[1] Liang H Y, Wei H, Xu H X 2016 Front. Phys. 11 117301
    [2] Chen W, Hu H, Jiang W, Xu Y, Zhang S, Xu H 2018 Chin.Phys. B 27 107403
    [3] Halas N J, Lal S, Chang W S, Nordlander P 2011 Chem. Rev.111 3913
    [4] Hao F, Nordlander P, Sonnefraud Y, Dorpe P V, Maier S A2009 ACS Nano 3 643
    [5] Li J, Liu T, Zheng H, Dong J, He E, Gao W, Han Q, Wang C, Wu Y 2014 Plasmonics 9 1439
    [6] Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch G A E,Dorpe P, Nordlander P, Moshchalkov V V, Maier S A 2010ACS Nano 4 1664
    [7] Sanchoparramon J, Jelovina D 2014 Nanoscale 6 13555
    [8] Ho J F, Boris L, Zhang J B 2012 Appl. Phys. A 107 133
    [9] Pena-Rodriguez 0, Rivera A, Campoy-Quiles M, Pal U 2012Nanoscale 5 209
    [10] Zhou H, Gao D, Gao L 2018 Plasmonics 13 623
    [11] Shao L, Fang C, Chen H, Man Y C, Wang J, Lin H Q 2012Nano Lett. 12 1424
    [12] Li J, Gu Y, Gong Q 2010 Opt. Express 18 17684
    [13] Ci X, Wu B, Song M, Liu Y, Chen G, Wu E, Zeng H 2014Appl. Phys. A 117 955
    [14] Yang Z J, Hao Z H, Lin H Q, Wang Q Q 2014 Nanoscale 64985
    [15] Cui Y, Zhou J, Tamma V A, Park W 2012 ACS Nano 6 2385
    [16] Fang Z, Cai J, Yan Z, Nordlander P, Halas N J, Zhu X 2011Nano Lett. 11 4475
    [17] Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657
    [18] Velichko E A, Nosich A I 2013 Opt. Lett. 38 4978
    [19] Yu H Q, Jiang S M, Wu D J 2015 J. Appl. Phys. 117 153101
    [20] Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102(in Chinese)[丛超,吴大建,刘晓峻2011物理学报60 046102]
    [21] Xu H, Li H, Liu Z, Xie S, Fu S, Zhou X 2012 Opt. Commun.285 3202
    [22] Zhu J, Li J J, Zhao J W 2013 J. Phys. Chem. C 117 584
    [23] Zhang J, Zayats A 2013 Opt. Express 21 8426
    [24] Wu D J, Yu H Q, Jiang S M, Wu X W, Liu X J 2014 Sci.China 57 1063
    [25] Wu D, Jiang S, Cheng Y 2012 Opt. Express 20 26559
    [26] Chen H L, Gao L 2013 Opt. Express 21 23619
    [27] Gao D, Gao L, Novitsky A, Novitsky A, Chen H, Boris L2015 Opt. Lett. 40 4162
    [28] Taflove A, Hagness S 2000 Computational Electrodynamics:the Finite-Difference Time-Domain Method(Vol.2)(Boston:Artech House)pp75-85
    [29] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370
    [30] Mukherjee S, Sobhani H,Lassiter J B,Bardhan R,Nordlander P, Halas N J 2010 Nano Lett. 10 2694
    [31] Pan T T, Cao W, Deng C S, Wang M, Xia W, Hao H 2018Acta Phys.Sin.67 157301(in Chinese)[潘庭婷,曹文,邓彩松,王鸣,夏巍,郝辉2018物理学报67 157301]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700