用户名: 密码: 验证码:
镁合金塑性机制研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Plastic Deformation Mechanisms in Magnesium Alloys:A Review
  • 作者:范海冬
  • 英文作者:Haidong Fan;Department of Mechanics,Sichuan University;
  • 关键词:镁合金 ; 塑性 ; 位错 ; 孪晶
  • 英文关键词:magnesium alloys;;plasticity;;dislocation slip;;deformation twinning
  • 中文刊名:固体力学学报
  • 英文刊名:Chinese Journal of Solid Mechanics
  • 机构:四川大学力学系;
  • 出版日期:2019-06-18 11:28
  • 出版单位:固体力学学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金(11672193、U1730106)资助
  • 语种:中文;
  • 页:4-42
  • 页数:39
  • CN:42-1250/O3
  • ISSN:0254-7805
  • 分类号:TG146.22;O772
摘要
纯镁具有丰富的微观塑性机制,尤其是孪晶,导致其塑性变形错综复杂,力学性能也与常见的面心及体心立方金属有显著差异.由于现今学界对位错滑移与孪晶变形等塑性机制缺乏充分认识,镁合金性能调控效果尚不理想,与铝合金相比,镁合金的力学性能还有很大的提升空间.基于此背景,论文首先回顾了镁合金的发展历史与应用现状.然后介绍了镁中位错滑移与孪晶变形等塑性机制的研究进展,重点阐述位错、孪晶、晶界、析出相、溶质原子等重要的微结构,并简要介绍了计算机模拟方法.最后展望了强韧性能方面值得重视的若干研究方向.
        Pure magnesium has various microscopic plastic modes,especially twinning,which lead to a complex plastic deformation.The mechanical properties also show significant difference from those of the common FCC and BCC metals.However,due to the lack of sufficient understanding on the plastic mechanisms in dislocation slip and twinning deformation,the mechanical properties of magnesium alloys were not improved well.Compared with aluminum alloys,the mechanical properties of magnesium alloys still have much room for improvement.Based on this background,I first reviewed the development history and application status of magnesium alloys.Then I introduced the research progress in plastic mechanisms of dislocation slip and twinning deformation as well as computer simulation methods.Especially dislocations,twinning,grain boundaries,precipitates,and solute atoms were highlighted.Finally,some research topics worthy of attention were proposed.
引文
[1] 张丁非,彭建,丁培道,潘复生.镁及镁合金的资源、应用及其发展现状[J].材料导报,2004,18(4):72-76.(Zhang D F,Peng J,Ding P D,Pan F S.The resource,application of magnesium and its alloys and the current development[J].Materials Review,2004,18(4):72-76.(in Chinese))
    [2] 丁文江,袁广银.新型镁合金的研究开发与应用[J].有色金属加工,2002,31(3):27-32.(Ding W J,Yuan G Y.Development and application of new type magnesium alloys[J].Nonferrous Metals Processing,2002,31(3):27-32.(in Chinese))
    [3] Luo A A.Magnesium casting technology for structural applications[J].Journal of Magnesium and Alloys,2013,1(1):2-22.
    [4] https://eic.rsc.org/elements/magnesium/2020016.article.
    [5] Grew N.A Treatise of the Nature and Use of the Bitter Purging Salt Contain’d in Epsom and Such Other Waters by Nehemiah Grew[M].1697.
    [6] Black J.Experiments Upon Magnesia Alba,Quicklime,and Some Other Alcaline Substances[M].G.Hamilton and J.Balfour,1756.
    [7] Abdel-Aal H K. Magnesium:From Resources to Production[M].CRC Press,2018.
    [8] Davy H.XXIII.Electro-chemical researches,on the decomposition of the earths;with observations on the metals obtained from the alkaline earths,and on the amalgam procured from ammonia[J].Philosophical Transactions of the Royal Society of London,1808,98:333-370.
    [9] Bussy A.Mémoire sur le Radical Métallique de la Magnésie[J]. Annales de Chimie, 1831, 46:434-437.
    [10] Nishizawa Y,Morii H,Durlach J.New Perspectives in Magnesium Research[M].Springer,2007.
    [11] Witte F.The history of biodegradable magnesium implants:A review[J].Acta Biomaterialia,2010,6(5):1680-1692.
    [12] The history of magnesium[J].Journal of the American Society for Naval Engineers,1957,69(1):81-94.
    [13] 支德瑜.全球与中国镁冶金业兴衰和汽车用镁[J].资源再生,2009,5:32-35.(Zhi D.The rise and fall of world and chinese magnesium production and magnesium usage in automobiles[J].Resource Recycling,2009,5:32-35.(in Chinese))
    [14] Blawert C,Hort N,Kainer K.Automotive applications of magnesium and its alloys[J].Transactions of the Indian Institute of Metals,2004,57(4):397-408.
    [15] E.Brown R.汽车和飞行器上的镁合金[C].2007中国汽车摩托车用镁国际研讨会论文集,2007:159-168(E.Brown R.Magnesium alloys for automobiles and aircraft[C].Papers of 2007International Symposium on Magnesium for Automobile and Motorcycle in China,Chongqing,2007:159-168.(in Chinese)).
    [16] 吴国华,陈玉狮,丁文江.镁合金在航空航天领域研究应用现状与展望[J].载人航天,2016,22(3):281-292.(Wu G H,Chen Y S,Ding W J.Current research,application and future prospect of magnesium alloys in aerospace industry[J].Manned Spaceflight,2016,22(3):281-292.(in Chinese))
    [17] Friedrich H E,Mordike B L.Magnesium Technology:Metallurgy,Design Data,Applications[M].Springer Berlin Heidelberg,2006.
    [18] 马鸣图,柏建仁.汽车轻量化材料及相关技术的研究进展[J].新材料产业,2006,6:37-42.(Ma M T,Bai J R.Research progress of automotive lightweight materials and related technologies[J].Advanced Materials Industry,2006,6:37-42.(in Chinese))
    [19] 丁文江,彭立明,付彭怀,何上明,陈彬,郭兴伍,曾小勤.高性能镁合金及其成形加工技术与应用研究进展[J].新材料产业,2008,02:58-63.(Ding W J,Peng L M,Fu P H,He S M,Chen B,Guo X W,Zeng X Q.Advances in high performance magnesium alloy and its forming technology and application[J].Advanced Materials Industry,2008,02:58-63.(in Chinese))
    [20] Zhang J,Joshi S P.Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium[J].Journal of the Mechanics and Physics of Solids,2012,60(5):945-972.
    [21] Mises R V.Mechanik der plastischen Formnderung von Kristallen[J].Journal of Applied Mathematics and Mechanics,1928,8(3):161-185.
    [22] Kelley E W,Hosford W F.The Plastic Deformation of Magnesium[R].Technical Report,1967.
    [23] del Valle J A,Carreo F,Ruano O A.Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling[J].Acta Materialia,2006,54(16):4247-4259.
    [24] Yoo M H.Slip,twinning,and fracture in hexagonal close-packed metals[J].Metallurgical Transactions A,1981,12(3):409-418.
    [25] 丁文江,吴玉娟,彭立明,曾小勤,林栋樑,陈彬.高性能镁合金研究及应用的新进展[J].中国材料进展,2010,29(8):37-45.(Ding W J,Wu Y J,Peng L M,Zeng X Q,Lin D L,Chen B.Research and application development of advanced magnesium alloys[J].Materials China,2010,29(8):37-45.(in Chinese))
    [26] You S,Huang Y,Kainer K U,Hort N.Recent research and developments on wrought magnesium alloys[J].Journal of Magnesium and Alloys,2017,5(3):239-253.
    [27] 黄光胜,黄光杰,汪凌云,潘复生.变形镁合金塑性的改善[J].材料导报,2006,20(1):39-41.(Huang G S,Huang G J,Wang L Y,Pan F S.Ductility enhancement of wrought magnesium alloys[J].Materials Review,2006,20(1):39-41.(in Chinese))
    [28] Chaudry U M,Hamad K,Kim J G.On the ductility of magnesium based materials:A mini review[J].Journal of Alloys and Compounds,2019,792:652-664.
    [29] 余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288.(Yu K,Li W X,Wang R C,Ma Z Q.Research,development and application of wrought magnesium alloys[J].The Chinese Journal of Nonferrous Metals,2003,13(2):277-288.(in Chinese))
    [30] Hutchinson C R,Nie J F,Gorsse S.Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn)AZ91alloy[J].Metallurgical and Materials Transactions A,2005,36(8):2093-2105.
    [31] Nie J F.Precipitation and hardening in magnesium alloys[J].Metallurgical and Materials Transactions A,2012,43(11):3891-3939.
    [32] Groh S,Marin E B,Horstemeyer M F,Bammann D J.Dislocation motion in magnesium:a study by molecular statics and molecular dynamics[J].Modelling and Simulation in Materials Science and Engineering,2009,17(7):075009.
    [33] Sandlbes S,Friák M,Neugebauer J,Raabe D.Basal and non-basal dislocation slip in Mg-Y[J].Materials Science and Engineering:A,2013,576(0):61-68.
    [34] Agnew S R,Horton J A,Yoo M H.Transmission electron microscopy investigation of dislocations in Mg and alpha-solid solution Mg-Li alloys[J]. Metallurgical and Materials Transactions A,2002,33(3):851-858.
    [35] Ding Z,Liu W,Sun H,Li S,Zhang D,Zhao Y,Lavernia E J,Zhu Y.Origins and dissociation of pyramidal dislocations in magnesium and its alloys[J].Acta Materialia,2018,146:265-272.
    [36] Obara T,Yoshinga H,Morozumi S.{11-22}<-1-123>Slip system in magnesium[J].Acta Metallurgica,1973,21(7):845-853.
    [37] Galiyev A,Kaibyshev R,Gottstein G.Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J].Acta Materialia,2001,49(7):1199-1207.
    [38] Stohr J F,Poirier J P.Etude en microscopie electronique du glissement pyramidal{1122}〈1123〉dans le magnesium[J].Philosophical Magazine,1972,25(6):1313-1329.
    [39] Syed B,Geng J,Mishra R K,Kumar K S.[0 0 0 1]Compression response at room temperature of singlecrystal magnesium[J].Scripta Materialia,2012,67(7-8):700-703.
    [40] Lilleodden E.Microcompression study of Mg(0001)single crystal[J].Scripta Materialia,2010,62(8):532-535.
    [41] Tang Y,El-Awady J A.Formation and slip of pyramidal dislocations in hexagonal close-packed magnesium single crystals[J].Acta Materialia,2014,71(0):319-332.
    [42] Fan H,El-Awady J A.Molecular dynamics simulations of orientation effects during tension,compression,and bending deformations of magnesium nanocrystals[J].Journal of Applied Mechanics,2015,82(10):101006-101006.10.1115/1.4030930
    [43] Tang X Z,Guo Y F,Xu S,Wang Y S.Atomistic study of pyramidal slips in pure magnesium single crystal under nano-compression[J].Philosophical Magazine,2015,95(19):2013-2025.
    [44] Zu Q,Guo Y F,Tang X Z.Analysis on dissociation of pyramidal I dislocation in magnesium by generalized-stacking-fault energy[J].Acta Metallurgica Sinica(English Letters),2015,28(7):876-882.
    [45] Li B,Ma E.Pyramidal slip in magnesium:Dislocations and stacking fault on the{1011}plane[J].Philosophical Magazine,2009,89(14):1223-1235.
    [46] Fan H,El-Awady J A.Towards resolving the anonymity of pyramidal slip in magnesium[J].Materials Science and Engineering:A,2015,644:318-324.
    [47] Xie K Y,Alam Z,Caffee A,Hemker K J.Pyramidal I slip in c-axis compressed Mg single crystals[J].Scripta Materialia,2016,112:75-78.
    [48] Kweon S,Raja D S.Investigation of the mechanical response of single crystal magnesium considering slip and twin[J].International Journal of Plasticity,2019,112:1-17.
    [49] Geng J,Chisholm M F,Mishra R K,Kumar K S.An electron microscopy study of dislocation structures in Mg single crystals compressed along[0001]at room temperature[J].Philosophical Magazine,2015,95(35):3910-3932.
    [50] Fan H,Wang Q,Tian X,El-Awady J A.Temperature effects on the mobility of pyramidaldislocations in magnesium[J].Scripta Materialia,2017,127:68-71.
    [51] Aubry S,Rhee M,Hommes G,Bulatov V V,Arsenlis A.Dislocation dynamics in hexagonal closepacked crystals[J].Journal of the Mechanics and Physics of Solids,2016,94:105-126.
    [52] Li B,Zhang Q W,Mathaudhu S N.Basal-pyramidal dislocation lock in deformed magnesium[J].Scripta Materialia,2017,134:37-41.
    [53] Wu Z,Ahmad R,Yin B,Sandlbes S,Curtin W A.Mechanistic origin and prediction of enhanced ductility in magnesium alloys[J].Science,2018,359(6374):447-452.
    [54] Zhang J,Zhang Y,El-Awady J A,Tang Y.The plausibility of dislocation slip on{-12-11}planes in Mg[J].Scripta Materialia,2018,156:19-22.
    [55] Geng J,Chisholm M F,Mishra R K,Kumar K S.The structure of〈c+a〉type dislocation loops in magnesium[J]. Philosophical Magazine Letters,2014,94(6):377-386.
    [56] Wu Z,Curtin W A.The origins of high hardening and low ductility in magnesium[J].Nature,2015,526(7571):62-67.
    [57] Fan H,Tang J,Tian X,Wang Q,Tian X,ElAwady J A.Core structures and mobility of dislocations in magnesium[J].Scripta Materialia,2017,135:37-40.
    [58] Stohr J F,Régnier P,Dupour J M.Glissement non basal dans le magnésium[J].Mémoires Scientifiques de la Revue de Métallurgie,1971,LXVIII(1):49-54.
    [59] Tonda H,Ando S.Effect of temperature and shear direction on yield stress by{11-22}<-1-123> slip in HCP metals[J].Metallurgical and Materials Transactions A,2002,33(13):831-836.
    [60] Srivastava K,Rao S I,El-Awady J A.Unveiling the role of super-jogs and dislocation induced atomicshuffling on controlling plasticity in magnesium[J].Acta Materialia,2018,161:182-193.
    [61] Máthis K,Nyilas K,Axt A,Dragomir-Cernatescu I,Ungár T,LukáˇcP.The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction[J].Acta Materialia,2004,52(10):2889-2894.
    [62] Jain A,Agnew S R.Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31Bsheet[J].Materials Science and Engineering:A,2007,462(1-2):29-36.
    [63] Miura H,Yang X,Sakai T,Nogawa H,Miura S,Watanabe Y,Jonas J J.High temperature deformation and extended plasticity in Mg single crystals[J].Philosophical Magazine,2005,85(30):3553-3565.
    [64] Chapuis A,Driver J H.Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals[J].Acta Materialia,2011,59(5):1986-1994.
    [65] Yoo M H,Agnew S R,Morris J R,Ho K M.Nonbasal slip systems in HCP metals and alloys:source mechanisms[J].Materials Science and Engineering:A,2001,319-321:87-92.
    [66] Buey D,Ghazisaeidi M.Atomistic simulation of screw dislocation cross-slip in Mg[J].Scripta Materialia,2016,117:51-54.
    [67] Aitken Z H,Fan H,El-Awady J A,Greer J R.The effect of size,orientation and alloying on the deformation of AZ31nanopillars[J].Journal of the Mechanics and Physics of Solids,2015,76(0):208-223.
    [68] Byer C M,Ramesh K T.Effects of the initial dislocation density on size effects in single-crystal magnesium[J].Acta Materialia,2013,61(10):3808-3818.
    [69] Kim G S.Small Volume Investigation of Slip and Twinning in Magnesium Single Crystals[D].Grenoble,2011.
    [70] Byer C M,Li B,Cao B,Ramesh K T.Microcompression of single-crystal magnesium[J].Scripta Materialia,2010,62(8):536-539.
    [71] Yu Q,Qi L,Mishra R K,Li J,Minor A M.Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale[J].Proceedings of the National Academy of Sciences of the United States of America,2013, 110(33):13289-13293.
    [72] Niewczas M.Lattice correspondence during twinning in hexagonal close-packed crystals[J].Acta Materialia,2010,58(17):5848-5857.
    [73] https://www.doitpoms.ac.uk/ldplib/shape_memory/background.php.
    [74] Christian J W,Mahajan S.Deformation twinning[J].Progress in Materials Science,1995,39(1-2):1-157.
    [75] Knezevic M,Levinson A,Harris R,Mishra R K,Doherty R D,Kalidindi S R.Deformation twinning in AZ31:Influence on strain hardening and texture evolution[J]. Acta Materialia, 2010, 58(19):6230-6242.
    [76] Barnett M R.Twinning and the ductility of magnesium alloys:Part II.“Contraction”twins[J].Materials Science and Engineering:A,2007,464(1):8-16.
    [77] Barnett M R,Keshavarz Z,Beer A G,Ma X.NonSchmid behaviour during secondary twinning in a polycrystalline magnesium alloy[J].Acta Materialia,2008,56(1):5-15.
    [78] Martin,Capolungo L,Jiang L,Jonas J J.Variant selection during secondary twinning in Mg-3%Al[J].Acta Materialia,2010,58(11):3970-3983.
    [79] Yu Q,Wang J,Jiang Y,McCabe R J,Li N,ToméC N.Twin-twin interactions in magnesium[J].Acta Materialia,2014,77:28-42.
    [80] Wu L,Jain A,Brown D W,Stoica G M,Agnew S R,Clausen B,Fielden D E,Liaw P K.Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy,ZK60A[J].Acta Materialia,2008,56(4):688-695.
    [81] Proust G,ToméC N,Jain A,Agnew S R.Modeling the effect of twinning and detwinning during strainpath changes of magnesium alloy AZ31[J].International Journal of Plasticity,2009,25(5):861-880.
    [82] Meyers M A,Vhringer O,Lubarda V A.The onset of twinning in metals:a constitutive description[J].Acta Materialia,2001,49(19):4025-4039.
    [83] Chen P,Li B,Culbertson D,Jiang Y.Contribution of extension twinning to plastic strain at low stress stage deformation of a Mg-3Al-1Zn alloy[J].Materials Science and Engineering:A,2018,709:40-45.
    [84] Hong S G,Park S H,Lee C S.Role of{10-12}twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy[J].Acta Materialia,2010,58(18):5873-5885.
    [85] El Kadiri H,Kapil J,Oppedal A L,Hector L G,Agnew S R,Cherkaoui M,Vogel S C.The effect of twin-twin interactions on the nucleation and propagation of{1012}twinning in magnesium[J].Acta Materialia,2013,61(10):3549-3563.
    [86] Basinski Z S,Szczerba M S,Niewczas M,Embury J D,Basinski S J.The transformation of slip dislocations during twinning of copper-aluminum alloy crystals[J].Revue de Metallurgie Cahiers D'Informations Techniques,1997,94(9):1037-1043.
    [87] Serra A,Bacon D J,Pond R C.Twins as barriers to basal slip in hexagonal-close-packed metals[J].Metallurgical and Materials Transactions A,2002,33(3):809-812.
    [88] Xin Y,Lv L,Chen H,He C,Yu H,Liu Q.Effect of dislocation-twin boundary interaction on deformation by twin boundary migration[J].Materials Science and Engineering:A,2016,662:95-99.
    [89] Barnett M R,Keshavarz Z,Beer A G,Atwell D.Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J].Acta Materialia,2004,52(17):5093-5103.
    [90] Capolungo L,Beyerlein I J,Kaschner G C,ToméC N.On the interaction between slip dislocations and twins in HCP Zr[J].Materials Science and Engineering:A,2009,513-514:42-51.
    [91] Hiura F,Mishra R K,Lukitsch M,Niewczas M.Nano-Indentation Studies of Twinned Magnesium Single Crystals[M]//Mathaudhu S N,Sillekens W H,Neelameggham N R,et al.Magnesium Technology 2012.Cham:Springer International Publishing,2016:117-119.
    [92] Chen P,Li B,Culbertson D,Jiang Y.Negligible effect of twin-slip interaction on hardening in deformation of a Mg-3Al-1Zn alloy[J].Materials Science and Engineering:A,2018,729:285-293.
    [93] Chen P,Wang F,Li B.Dislocation absorption and transmutation at{10-12}twin boundaries in deformation of magnesium[J].Acta Materialia,2019,164:440-453.
    [94] Bakarian P W.Glide and Twinning in Magnesium Single Crystals at Elevated Temperatures[D].Yale University,1941.
    [95] Price P B.Nucleation and growth of twins in dislocation-free zinc crystals[J].Proceedings of the Royal Society of London Series A,Mathematical and Physical Sciences,1961,260(1301):251-262.
    [96] Hyong Yoo M,Wei C T.Growth of deformation twins in zinc crystals[J].Philosophical Magazine,1966,14(129):573-587.
    [97] Tomsett D I,Bevis M.The formation of stacking faults in{1012}twins in zinc as a result of slip dislocation-deformation twin interactions[J].The Philosophical Magazine:A Journal of Theoretical Experimental and Applied Physics,1969,19(159):533-537.
    [98] Tomsett D I,Bevis M.The incorporation of basal slip dislocations in{1012}twins in zinc crystals[J].Philosophical Magazine,1969,19(157):129-140.
    [99] Dickson J I,Robin C.The incorporation of slip dislocations in{1102}twins in zirconium[J].Materials Science and Engineering,1973,11(5):299-302.
    [100]Yoo M H.Interaction of slip dislocations with twins in hcp metals[J].Transactions of the Metallurgical Society of AIME,1969,245:1841-2114.
    [101]Serra A,Bacon D.Computer simulation of twinning dislocation in magnesium using a many-body potential[J].Philosophical Magazine A,1991,63(5):1001-1012.
    [102]Yuasa M,Masunaga K,Mabuchi M,Chino Y.Interaction mechanisms of screw dislocations with and twin boundaries in Mg[J].Philosophical Magazine,2013,94(3):285-305.
    [103]Serra A,Bacon D J.A new model for{1012}twin growth in hcp metals[J].Philosophical Magazine A,1996,73(2):333-343.
    [104]Wang J,Beyerlein I J,ToméC N.Reactions of lattice dislocations with grain boundaries in Mg:Implications on the micro scale from atomic-scale calculations[J].International Journal of Plasticity,2014,56(0):156-172.
    [105]Fan H,Aubry S,Arsenlis A,El-Awady J A.The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations[J].Acta Materialia,2015,92(0):126-139.
    [106]Fan H,Aubry S,Arsenlis A,El-Awady J A.Grain size effects on dislocation and twinning mediated plasticity in magnesium[J].Scripta Materialia,2016,112:50-53.
    [107]Fan H,Aubry S,Arsenlis A,El-Awady J A.Discrete dislocation dynamics simulations of twin sizeeffects in magnesium[J].MRS Proceedings,2015,1741:mrsf14-1741-aa02-02.
    [108]Wang F,Agnew S R.Dislocation transmutation by tension twinning in magnesium alloy AZ31[J].International Journal of Plasticity,2016,81:63-86.
    [109]Molodov K D,Al-Samman T,Molodov D A.Profuse slip transmission across twin boundaries in magnesium[J].Acta Materialia,2017,124:397-409.
    [110]Gong M,Liu G,Wang J,Capolungo L,ToméC N.Atomistic simulations of interaction between basal dislocations and three-dimensional twins in magnesium[J].Acta Materialia,2018,155:187-198.
    [111]Jiang L,Jonas J J,Luo A A,Sachdev A K,Godet S.Influence of{10-12}extension twinning on the flow behavior of AZ31 Mg alloy[J].Materials Science and Engineering:A,2007,445-446(0):302-309.
    [112]Sim G D,Kim G,Lavenstein S,Hamza M H,Fan H,El-Awady J A.Anomalous hardening in magnesium driven by a size-dependent transition in deformation modes[J].Acta Materialia,2018,144(Supplement C):11-20.
    [113]Wang B,Xin R,Huang G,Liu Q.Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31during uniaxial compression[J].Materials Science and Engineering:A,2012,534(0):588-593.
    [114]Sahoo S K,Toth L S,Biswas S.An analytical model to predict strain-hardening behaviour and twin volume fraction in a profoundly twinning magnesium alloy[J].International Journal of Plasticity,2019,119:273-290.
    [115]Ma Q,El Kadiri H,Oppedal A L,Baird J C,Li B,Horstemeyer M F,Vogel S C.Twinning effects in a rod-textured AM30Magnesium alloy[J].International Journal of Plasticity,2012,29:60-76.
    [116]Yang C,Liu H,Yang B,Shi B,Peng Y,Pan F,Wu L.The effect of pre-twinning on the mechanical behavior of free-end torsion for an extruded AZ31magnesium alloy[J].Materials Science and Engineering:A,2019,743:391-396.
    [117]Cáceres C H,LukáˇcP,Blake A.Strain hardening due to{10 12}twinning in pure magnesium[J].Philosophical Magazine,2008,88(7):991-1003.
    [118]Sarker D,Chen D L.Detwinning and strain hardening of an extruded magnesium alloy during compression[J].Scripta Materialia,2012,67(2):165-168.
    [119]Gong M,Xu S,Jiang Y,Liu Y,Wang J.Structural characteristics of{1012}non-cozone twin-twin interactions in magnesium[J].Acta Materialia,2018,159:65-76.
    [120]Sun Q,Ostapovets A,Zhang X,Tan L,Liu Q.Investigation of twin-twin interaction in deformed magnesium alloy[J].Philosophical Magazine,2018,98(9):741-751.
    [121] Morrow B M,Cerreta E K,McCabe R J,ToméC N.Toward understanding twin-twin interactions in hcp metals:Utilizing multiscale techniques to characterize deformation mechanisms in magnesium[J].Materials Science and Engineering:A,2014,613:365-371.
    [122]Sun Q,Zhang X Y,Ren Y,Tan L,Tu J.Observations on the intersection between 101 2twin variants sharing the same zone axis in deformed magnesium alloy[J]. Materials Characterization,2015,109:160-163.
    [123]Yu Q,Wang J,Jiang Y,McCabe R J,ToméC N.Co-zone{10-12}twin interaction in magnesium single crystal[J].Materials Research Letters,2014,2(2):82-88.
    [124]Mao B,Liao Y,Li B.Abnormal twin-twin interaction in an Mg-3Al-1Zn magnesium alloy processed by laser shock peening[J].Scripta Materialia,2019,165:89-93.
    [125]Chen P,Wang F,Ombogo J,Li B.Formation of 60°〈01-10〉boundaries between{10-12}twin variants in deformation of a magnesium alloy[J].Materials Science and Engineering:A,2019,739:173-185.
    [126]Yu Q,Jiang Y,Wang J.Cyclic deformation and fatigue damage in single-crystal magnesium under fully reversed strain-controlled tension-compression in the[10-10]direction[J].Scripta Materialia,2015,96:41-44.
    [127]Shi D,Liu T,Hou D,Chen H,Pan F,Chen H.The effect of twin-twin interaction in Mg3Al1Zn alloy during compression[J].Journal of Alloys and Compounds,2016,685:428-435.
    [128]Arul Kumar M,Gong M,Beyerlein I J,Wang J,ToméC N.Role of local stresses on co-zone twintwin junction formation in HCP magnesium[J].Acta Materialia,2019,168:353-361.
    [129]Mokdad F,Chen D L,Li D Y.Single and double twin nucleation,growth,and interaction in an extruded magnesium alloy[J].Materials &Design,2017,119:376-396.
    [130]Agnew S R,ToméC N,Brown D W,Holden T M,Vogel S C.Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling[J].Scripta Materialia,2003,48(8):1003-1008.
    [131]Wu P D,Guo X Q,Qiao H,Agnew S R,Lloyd D J,Embury J D.On the rapid hardening and exhaustion of twinning in magnesium alloy[J].Acta Materialia,2017,122:369-377.
    [132]Dixit N,Xie K Y,Hemker K J,Ramesh K T.Microstructural evolution of pure magnesium under high strain rate loading[J].Acta Materialia,2015,87:56-67.
    [133]El Kadiri H,Oppedal A L.A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects[J].Journal of the Mechanics and Physics of Solids,2010,58(4):613-624.
    [134]Oppedal A L,El Kadiri H,ToméC N,Kaschner G C,Vogel S C,Baird J C,Horstemeyer M F.Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium[J].International Journal of Plasticity,2012,30-31:41-61.
    [135]El Kadiri H,Barrett C D,Wang J,ToméC N.Why are twins profuse in magnesium?[J].Acta Materialia,2015,85(0):354-361.
    [136]Orowan E.Dislocations in Metals[M].Institute of Metals Division,the American Institute of Mining and Metallurgical Engineers,1954.
    [137]Thompson N,Millard D J.XXXVIII.Twin formation,in cadmium[J].Philosophical Magazine Series7,1952,43(339):422-440.
    [138]Mendelson S.Dislocation dissociations in hcp metals[J].Journal of Applied Physics,1970,41(5):1893-1910.
    [139]Mendelson S.Zonal dislocations and twin lamellae in h.c.p.metals[J].Materials Science and Engineering,1969,4(4):231-242.
    [140]Bacon D J,Martin J W.Computer Simulation of Dislocation Cores in HCP Metals[M]//Ashby M F,Bullough R,Hartley C S,et al.Dislocation Modelling of Physical Systems:Pergamon,1981:269-272.
    [141]Capolungo L,Beyerlein I J.Nucleation and stability of twins in hcp metals[J].Physical Review B,2008,78(2):024117.PRB
    [142]Wang J,Hirth J P,ToméC N.(10-12)twinning nucleation mechanisms in hexagonal-close-packed crystals[J]. Acta Materialia,2009,57(18):5521-5530.
    [143]Wang J,Hoagland R G,Hirth J P,Capolungo L,Beyerlein I J,ToméC N.Nucleation of a(10-12)twin in hexagonal close-packed crystals[J].Scripta Materialia,2009,61(9):903-906.
    [144]Khosravani A,Fullwood D T,Adams B L,Rampton T M,Miles M P,Mishra R K.Nucleation and propagation of{10-12}twins in AZ31 magnesium alloy[J].Acta Materialia,2015,100:202-214.
    [145] Molnár P,Jger A,Lejˇcek P.Twin nucleation at grain boundaries in Mg-3wt.%Al-1wt.%Zn alloy processed by equal channel angular pressing[J].Scripta Materialia,2012,67(5):467-470.
    [146] Wang J,Beyerlein I J,ToméC N.An atomic and probabilistic perspective on twin nucleation in Mg[J].Scripta Materialia,2010,63(7):741-746.
    [147]Feng H,Fang Q H,Liu B,Liu Y,Liu Y W,Wen P H.Nucleation and growth mechanisms of nanoscale deformation twins in hexagonal-close-packed metal magnesium[J].Mechanics of Materials,2017,109:26-33.
    [148]Wang J,Yadav S K,Hirth J P,ToméC N,Beyerlein I J.Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals[J].Materials Research Letters,2013,1(3):126-132.
    [149]Yu Q,Qi L,Chen K,Mishra R K,Li J,Minor A M.The nanostructured origin of deformation twinning[J].Nano Letters,2012,12(2):887-892.
    [150]Sun Q,Zhang X Y,Ren Y,Tu J,Liu Q.Interfacial structure of{10-12}twin tip in deformed magnesium alloy[J].Scripta Materialia,2014,90-91(0):41-44.
    [151]Zu Q,Tang X Z,Xu S,Guo Y F.Atomistic study of nucleation and migration of the basal/prismatic interfaces in Mg single crystals[J].Acta Materialia,2017,130:310-318.
    [152]Serra A,Bacon D J,Pond R C.Dislocations in interfaces in the h.c.p.metals—I.Defects formed by absorption of crystal dislocations[J].Acta Materialia,1999,47(5):1425-1439.
    [153]Pond R C,Serra A,Bacon D J.Dislocations in interfaces in the h.c.p.metals—II.Mechanisms of defect mobility under stress[J].Acta Materialia,1999,47(5):1441-1453.
    [154]Pond R C,Bacon D J,Serra A,Sutton A P.The crystallography and atomic structure of line defects in twin boundaries in hexagonal-close-packed metals[J].Metallurgical Transactions A, 1991, 22(6):1185-1196.
    [155]Serra A,Bacon D J,Pond R C.The crystallography and core structure of twinning dislocations in H.C.P.metals[J]. Acta Metallurgica,1988,36(12):3183-3203.
    [156]Serra A,Bacon D J.Computer simulation of twin boundaries in the h.c.p.metals[J].Philosophical Magazine A,1986,54(6):793-804.
    [157]Li B,Ma E.Atomic shuffling dominated mechanism for deformation twinning in magnesium[J].Physical Review Letters,2009,103(3):035503.PRL
    [158]Liu B Y,Wang J,Li B,Lu L,Zhang X Y,Shan Z W,Li J,Jia C L,Sun J,Ma E.Twinning-like lattice reorientation without a crystallographic twinning plane[J].Nature Communications,2014,5:3297.
    [159]Liu B Y,Wan L,Wang J,Ma E,Shan Z W.Terrace-like morphology of the boundary created through basal-prismatic transformation in magnesium[J].Scripta Materialia,2015,100:86-89.
    [160]单智伟,刘博宇.Mg的{10-12}形变孪晶机制[J].金属学报,2016,52(10):1267-1278.(Shan Z W,Liu B Y.The mechanism of{10-12}deformation twinning in magnesium[J].Acta Metallurgica Sinica,2016,52(10):1267-1278.(in Chinese))
    [161]Serra A,Bacon D J,Pond R C.Comment on‘atomic shuffling dominated mechanism for deformation twinning in magnesium’[J].Physical Review Letters,2010,104(2):029603.PRL
    [162]Li B,Ma E.Li and Ma reply[J].Physical Review Letters,2010,104(2):029604.PRL
    [163] Ostapovets A,Molnár P.On the relationship between the“shuffling-dominated”and “shear-dominated”mechanisms for twinning in magnesium[J].Scripta Materialia,2013,69(4):287-290.
    [164] Ostapovets A,Molnár P.On the relationship between the“shuffling-dominated”and “shear-dominated”mechanisms for{1012}twinning in magnesium[J].Scripta Materialia,2013,69(4):287-290.
    [165]Khater H,Serra A,Pond R.Atomic shearing and shuffling accompanying the motion of twinning disconnections in Zirconium[J].Philosophical Magazine2013,93(10-12):1279-1298.
    [166]Hall E O.The deformation and ageing of mild steel:III discussion of results[J].Proceedings of the Royal Society B:Biological Sciences, 1951, 64(9):747-753.
    [167]Petch N J.The cleavage strength of polycrystals[J].The Journal of the Iron and Steel Institute,1953,174:25-28.
    [168] Wyrzykowski J W,Grabski M W.The Hall-Petch relation in aluminium and its dependence on the grain boundary structure[J].Philosophical Magazine A,1986,53(4):505-520.
    [169]Yu H,Xin Y,Wang M,Liu Q.Hall-Petch relationship in Mg alloys:A review[J].Journal of Materials Science &Technology,2018,34(2):248-256.
    [170]Wang Y,Choo H.Influence of texture on Hall-Petch relationships in an Mg alloy[J].Acta Materialia,2014,81(0):83-97.
    [171]Yuan W,Panigrahi S K,Su J Q,Mishra R S.Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy[J].Scripta Materialia,2011,65(11):994-997.
    [172]Yu H,Li C,Xin Y,Chapuis A,Huang X,Liu Q.The mechanism for the high dependence of the HallPetch slope for twinning/slip on texture in Mg alloys[J].Acta Materialia,2017,128:313-326.
    [173]Armstrong R,Codd I,Douthwaite R M,Petch N J.The plastic deformation of polycrystalline aggregates[J].The Philosophical Magazine:A Journal of Theoretical Experimental and Applied Physics,1962,7(73):45-58.
    [174]Jain A,Duygulu O,Brown D W,ToméC N,Agnew S R.Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy,AZ31B,sheet[J].Materials Science and Engineering:A,2008,486(1):545-555.
    [175]Kim D,Kim J H,Lee M G,Lee Y S,Kang S H.Experimental investigation into effect of annealing treatment on springback of magnesium alloy sheets[J]. Materials Research Innovations,2011,15(sup1):s183-s186.
    [176]Sharon J A,Zhang Y, Mompiou F,Legros M,Hemker K J.Discerning size effect strengthening in ultrafine-grained Mg thin films[J].Scripta Materialia,2014,75(0):10-13.
    [177]Fan H,Aubry S,Arsenlis A,El-Awady J A.Orientation influence on grain size effects in ultrafinegrained magnesium[J].Scripta Materialia,2015,97(0):25-28.
    [178]Rao G S,Prasad Y V R K.Grain boundary strengthening in strongly textured magnesium produced by hot rolling[J].Metallurgical and Materials Transactions A,1982,13(12):2219-2226.
    [179]Wilson D V,Chapman J A.Effects of preferred orientation on the grain size dependence of yield strength in metals[J].Philosophical Magazine,1963,8(93):1543-1551.
    [180]Choi H J,Kim Y,Shin J H,Bae D H.Deformation behavior of magnesium in the grain size spectrum from nano-to micrometer[J].Materials Science and Engineering:A,2010,527(6):1565-1570.
    [181]Li J,Xu W,Wu X,Ding H,Xia K.Effects of grain size on compressive behaviour in ultrafine grained pure Mg processed by equal channel angular pressing at room temperature[J].Materials Science and Engineering:A,2011,528(18):5993-5998.
    [182]Armstrong R W.60 Years of Hall-Petch:past to present nano-scale connections[J].Materials Transactions,2014,55(1):2-12.
    [183]Hutchinson W B,Barnett M R.Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals[J].Scripta Materialia,2010,63(7):737-740.
    [184]Somekawa H,Mukai T.Hall-Petch breakdown in fine-grained pure magnesium at low strain rates[J].Metallurgical and Materials Transactions A,2014,46(2):894-902.
    [185]Shi B Q,Chen R S,Ke W.Influence of grain size on the tensile ductility and deformation modes of rolled Mg-1.02wt.%Zn alloy[J].Journal of Magnesium and Alloys,2013,1(3):210-216.
    [186]Kim H K.The grain size dependence of flow stress in an ECAPed AZ31 Mg alloy with a constant texture[J].Materials Science and Engineering:A,2009,515(1):66-70.
    [187]Barnett M R.A rationale for the strong dependence of mechanical twinning on grain size[J].Scripta Materialia,2008,59(7):696-698.
    [188]Lapovok R,Thomson P F,Cottam R,Estrin Y.The effect of grain refinement by warm equal channel angular extrusion on room temperature twinning in magnesium alloy ZK60[J].Journal of Materials Science,2005,40(7):1699-1708.
    [189]Ghaderi A,Barnett M R.Sensitivity of deformation twinning to grain size in titanium and magnesium[J].Acta Materialia,2011,59(20):7824-7839.
    [190]Beyerlein I J,Capolungo L,Marshall P E,McCabe R J,ToméC N.Statistical analyses of deformation twinning in magnesium[J].Philosophical Magazine2010,90(16):2161-2190.
    [191]Liu G,Xin R,Liu F,Liu Q.Twinning characteristic in tension of magnesium alloys and its effect on mechanical properties[J].Materials &Design,2016,107:503-510.
    [192]Cepeda-Jiménez C M,Molina-Aldareguia J M,PérezPrado M T.Origin of the twinning to slip transition with grain size refinement,with decreasing strain rate and with increasing temperature in magnesium[J].Acta Materialia,2015,88:232-244.
    [193]Marcinkowski M J,Lipsitt H A.The plastic deformation of chromium at low temperatures[J].Acta Metallurgica,1962,10(2):95-111.
    [194]Hull D.Effect of grain size and temperature on slip,twinning and fracture in 3%silicon iron[J].Acta Metallurgica,1961,9(3):191-204.
    [195]Culbertson D,Yu Q,Jiang Y.In situ observation of cross-grain twin pair formation in pure magnesium[J].Philosophical Magazine Letters,2018,98(4):139-146.
    [196]Shi D,Liu T,Wang T,Hou D,Zhao S,Hussain S.{10-12}Twins across twin boundaries traced by in situ EBSD[J].Journal of Alloys and Compounds,2017,690:699-706.
    [197]Beyerlein I J,McCabe R J,ToméC N.Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium:A multi-scale modeling study[J].Journal of the Mechanics and Physics of Solids,2011,59(5):988-1003.
    [198]Capolungo L,Marshall P E,McCabe R J,Beyerlein I J,ToméC N.Nucleation and growth of twins in Zr:A statistical study[J].Acta Materialia,2009,57(20):6047-6056.
    [199]Fernández A,Jérusalem A, Gutiérrez-Urrutia I,Pérez-Prado M T.Three-dimensional investigation of grain boundary-twin interactions in a Mg AZ31alloy by electron backscatter diffraction and continuum modeling[J]. Acta Materialia,2013,61(20):7679-7692.
    [200]Xu S,Liu T M,Zhang Y,He J J,Zeng W,Wang J X.Continuation of twins across grain boundary in extruded Mg-3Al-1Zn alloy[J].Materials Science and Technology,2013,29(9):1144-1147.
    [201]Guo C,Xin R,Xu J,Song B,Liu Q.Strain compatibility effect on the variant selection of connected twins in magnesium[J].Materials &Design,2015,76:71-76.
    [202]Huang Q,Xin R.Correlation between boundary misorientation and a geometric parameter for crossboundary twins in Mg alloys[J].Advanced Engineering Materials,2017,19(3):1600614.
    [203]Arul Kumar M,Beyerlein I J,McCabe R J,ToméC N.Grain neighbour effects on twin transmission in hexagonal close-packed materials[J].Nature Communications,2016,7:13826.
    [204]Tang J,Fan H,Jiang W,Wang Q,Wei D,Tian X,Zhang X.Grain size effects on extension twinning in magnesium[J].International Journal of Plasticity,Under revision.
    [205]Shi Z Z,Liu X F.Characteristics of cross grain boundary contraction twin pairs and bands in a deformed Mg alloy[J].Journal of Alloys and Compounds,2017,692:274-279.
    [206]Shi Z Z.Compound cross-grain boundary extension twin structure and its related twin variant selection in a deformed Mg alloy[J].Journal of Alloys and Compounds,2017,716:128-136.
    [207]Kacher J,Minor A M.Twin boundary interactions with grain boundaries investigated in pure rhenium[J].Acta Materialia,2014,81:1-8.
    [208]Kacher J,Sabisch J E,Minor A M.Statistical analysis of twin/grain boundary interactions in pure rhenium[J].Acta Materialia,2019.
    [209]Barnett M R,Nave M D,Ghaderi A.Yield point elongation due to twinning in a magnesium alloy[J].Acta Materialia,2012,60(4):1433-1443.
    [210]Wang L,Eisenlohr P,Yang Y,Bieler T R,Crimp M A.Nucleation of paired twins at grain boundaries in titanium[J].Scripta Materialia,2010,63(8):827-830.
    [211] Mukai T,Yamanoi M,Watanabe H,Ishikawa K,Higashi K.Effect of grain refinement on tensile ductility in ZK60magnesium alloy under dynamic loading[J]. Materials Transactions, 2001, 42(7):1177-1181.
    [212]Brya K,Morgiel J,Faryna M,Edalati K,Horita Z.Effect of high-pressure torsion on grain refinement,strength enhancement and uniform ductility of EZ magnesium alloy[J].Materials Letters,2018,212:323-326.
    [213]Cai H,Hu J,Jiang F,Fu D,Teng J,Zhang H.A novel repetitive continuous welding extrusion for refining grain size and evading strength-ductility trade-off in AZ31magnesium alloy[J].Materials Science and Engineering:A,2019,753:192-196.
    [214]Martynenko N S,Lukyanova E A,Serebryany V N,Gorshenkov M V,Shchetinin I V,Raab G I,Dobatkin S V,Estrin Y.Increasing strength and ductility of magnesium alloy WE43by equal-channel angular pressing[J].Materials Science and Engineering:A,2018,712:625-629.
    [215]Pourbahari B,Mirzadeh H,Emamy M,Roumina R.Enhanced ductility of a fine-grained Mg-Gd-Al-Zn magnesium alloy by hot extrusion[J].Advanced Engineering Materials,2018,20(8):1701171.
    [216]Koike J,Kobayashi T,Mukai T,Watanabe H,Suzuki M,Maruyama K,Higashi K.The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J].Acta Materialia,2003,51(7):2055-2065.
    [217]Yamashita A,Horita Z,Langdon T G.Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J].Materials Science and Engineering:A,2001,300(1):142-147.
    [218]Lapovok R,Cottam R,Thomson P F,Estrin Y.Extraordinary superplastic ductility of magnesium alloy ZK60[J].Journal of Materials Research,2005,20(6):1375-1378.
    [219]Figueiredo R B,Langdon T G.Record superplastic ductility in a magnesium alloy processed by equalchannel angular pressing[J].Advanced Engineering Materials,2008,10(1-2):37-40.
    [220]Matsubara K,Miyahara Y,Horita Z,Langdon T G.Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP[J].Acta Materialia,2003,51(11):3073-3084.
    [221]Wu D,Chen R S,Tang W N,Han E H.Influence of texture and grain size on the room-temperature ductility and tensile behavior in a Mg-Gd-Zn alloy processed by rolling and forging[J]. Materials &Design,2012,41:306-313.
    [222]Cepeda-Jiménez C M,Molina-Aldareguia J M,PérezPrado M T.Effect of grain size on slip activity in pure magnesium polycrystals[J].Acta Materialia,2015,84:443-456.
    [223]Akhtar A,Teghtsoonian E.Substitutional solution hardening of magnesium single crystals[J].Philosophical Magazine,1972,25(4):897-916.
    [224]Akhtar A,Teghtsoonian E.Solid solution strengthening of magnesium single crystals—I alloying behaviour in basal slip[J].Acta Metallurgica,1969,17(11):1339-1349.
    [225]Stanford N,Atwell D,Barnett M R.The effect of Gd on the recrystallisation,texture and deformation behaviour of magnesium-based alloys[J].Acta Materialia,2010,58(20):6773-6783.
    [226]Gao L,Chen R S,Han E H.Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys[J].Journal of Alloys and Compounds,2009,481(1):379-384.
    [227]Akhtar A,Teghtsoonian E.Solid solution strengthening of magnesium single crystals—ii the effect of solute on the ease of prismatic slip[J].Acta Metallurgica,1969,17(11):1351-1356.
    [228] Ahmadieh A.Lithium Alloying and Dislocation Mechanisms for Prismatic Slip in Magnesium[R].1964.
    [229]Yasi J A,Hector L G,Trinkle D R.Prediction of thermal cross-slip stress in magnesium alloys from direct first-principles data[J].Acta Materialia,2011,59(14):5652-5660.
    [230]Stanford N,Cottam R,Davis B,Robson J.Evaluating the effect of yttrium as a solute strengthener in magnesium using in situ neutron diffraction[J].Acta Materialia,2014,78:1-13.
    [231]Kim K H,Jeon J B,Kim N J,Lee B J.Role of yttrium in activation of〈c+a〉slip in magnesium:An atomistic approach[J].Scripta Materialia,2015,108:104-108.
    [232]Buey D,Hector L G,Ghazisaeidi M.Core structure and solute strengthening of second-order pyramidal〈c+a〉dislocations in Mg-Y alloys[J].Acta Materialia,2018,147:1-9.
    [233]Raeisinia B,Agnew S R.Using polycrystal plasticity modeling to determine the effects of grain size and solid solution additions on individual deformation mechanisms in cast Mg alloys[J].Scripta Materialia,2010,63(7):731-736.
    [234]Stanford N,Barnett M R.Solute strengthening of prismatic slip,basal slip and twinning in Mg and MgZn binary alloys[J].International Journal of Plasticity,2013,47:165-181.
    [235]Yi P,Falk M L.Thermally activated twin thickening and solute softening in magnesium alloys-a molecular simulation study[J].Scripta Materialia,2019,162:195-199.
    [236]Li W,Tang J,Wang Q,Fan H.Molecular dynamics simulations on the mechanical behavior of AlCoCrCu0.5FeNi high-entropy alloy nanopillars[C].TMS 2019148th Annual Meeting &Exhibition Supplemental Proceedings,2019:1271-1280.
    [237]Stanford N,Marceau R K W,Barnett M R.The effect of high yttrium solute concentration on the twinning behaviour of magnesium alloys[J].Acta Materialia,2015,82:447-456.
    [238] Sandlbes S,Zaefferer S,Schestakow I,Yi S,Gonzalez-Martinez R.On the role of non-basal deformation mechanisms for the ductility of Mg and MgY alloys[J].Acta Materialia,2011,59(2):429-439.
    [239]Agnew S R,Yoo M H,ToméC N.Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J].Acta Materialia,2001,49(20):4277-4289.
    [240]镁锂合金首次用于高轨卫星[R].铝加工,2019,01:20.
    [241]Ando S,Tonda H.Non-basal slip in magnesium-lithium alloy single crystals[J].Materials Transactions,JIM,2000,41(9):1188-1191.
    [242]Sandlbes S,Pei Z,Friák M,Zhu L F,Wang F,Zaefferer S,Raabe D,Neugebauer J.Ductility improvement of Mg alloys by solid solution:Ab initio modeling,synthesis and mechanical properties[J].Acta Materialia,2014,70:92-104.
    [243]Sandlbes S,Friák M,Zaefferer S,Dick A,Yi S,Letzig D,Pei Z,Zhu L F,Neugebauer J,Raabe D.The relation between ductility and stacking fault energies in Mg and Mg-Y alloys[J].Acta Materialia,2012,60(6):3011-3021.
    [244]Agnew S R,Capolungo L,Calhoun C A.Connections between the basal I1“growth”fault and〈c+a〉dislocations[J].Acta Materialia,2015,82:255-265.
    [245]Rikihisa H,Mori T,Tsushida M,Kitahara H,Ando S.Influence of yttrium addition on plastic deformation of magnesium[J].Materials Transactions,2017,58(12):1656-1663.
    [246] Sandlbes S,Friák M,Korte-Kerzel S,Pei Z,Neugebauer J,Raabe D.A rare-earth free magnesium alloy with improved intrinsic ductility[J].Scientific Reports,2017,7(1):10458.
    [247]Wilm A.The hardening of light alimiinum alloys[J].Metallurgie,1911,8:225.
    [248]Argon A.Strengthening Mechanisms in Crystal Plasticity[M].Oxford University Press,2007.
    [249]Ardell A.Precipitation hardening[J].Metallurgical Transactions A,1985,16(12):2131-2165.
    [250]Seol J B,Na S H,Gault B,Kim J E,Han J C,Park C G,Raabe D.Core-shell nanoparticle arrays double the strength of steel[J].Scientific Reports,2017,7:42547.
    [251]Tang S,Xin T,Xu W,Miskovic D,Sha G,Quadir Z,Ringer S,Nomoto K,Birbilis N,Ferry M.Precipitation strengthening in an ultralight magnesium alloy[J].Nature Communications,2019,10(1):1003.
    [252]Clark J B.Age hardening in a Mg-9wt.%Al alloy[J].Acta Metallurgica,1968,16(2):141-152.
    [253]Nie J F.Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J].Scripta Materialia,2003,48(8):1009-1015.
    [254]Sun W B,Liu C M,Gao Y H,Chen Z Y,Han X Z.Research on the precipitation strengthening of particle with a new shape model in magnesium alloys[J].Materials Science and Engineering:A,2015,642:309-315.
    [255]Cepeda-Jiménez C M,Castillo-Rodríguez M,PérezPrado M T.Origin of the low precipitation hardening in magnesium alloys[J].Acta Materialia,2019,165:164-176.
    [256]Agnew S R,Mulay R P,Polesak Iii F J,Calhoun C A,Bhattacharyya J J,Clausen B.In situ neutron diffraction and polycrystal plasticity modeling of a MgY-Nd-Zr alloy:Effects of precipitation on individual deformation mechanisms[J].Acta Materialia,2013,61(10):3769-3780.
    [257]Stanford N,Geng J,Chun Y,Davies C,Nie J,Barnett M.Effect of plate-shaped particle distributions on the deformation behaviour of magnesium alloy AZ91in tension and compression[J].Acta Materialia,2012,60(1):218-228.
    [258]Robson J D,Stanford N,Barnett M R.Effect of precipitate shape on slip and twinning in magnesium alloys[J].Acta Materialia,2011,59(5):1945-1956.
    [259]Jain J,Cizek P,Poole W J,Barnett M R.Precipitate characteristics and their effect on the prismatic-slipdominated deformation behaviour of an Mg-6Zn alloy[J].Acta Materialia,2013,61(11):4091-4102.
    [260] Wang J,Stanford N.Investigation of precipitate hardening of slip and twinning in Mg5%Zn by micropillar compression[J].Acta Materialia,2015,100:53-63.
    [261] Wang J,Ramajayam M,Charrault E,Stanford N.Quantification of precipitate hardening of twin nucleation and growth in Mg and Mg-5Zn using micro-pillar compression[J].Acta Materialia,2019,163:68-77.
    [262]Clark J.Transmission electron microscopy study of age hardening in a Mg-5 wt.%Zn alloy[J].Acta Metallurgica,1965,13(12):1281-1289.
    [263]Gharghouri M,Weatherly G,Embury J.The interaction of twins and precipitates in a Mg-7.7at.%Al alloy[J].Philosophical Magazine A,1998,78(5):1137-1149.
    [264]Jain J,Cizek P,Poole W J,Barnett M R.The role of back stress caused by precipitates on twinning in a Mg-6Zn alloy[J].Materials Science and Engineering:A,2015,647:66-73.
    [265]Stanford N,Barnett M R.Effect of particles on the formation of deformation twins in a magnesium-based alloy[J]. Materials Science and Engineering:A,2009,516(1-2):226-234.
    [266]Li B, Mathaudhu S N. Interaction between a Mg17Al12Precipitate and{1012}<1012> Twin Boundary in Magnesium Alloys[M].Magnesium Technology 2013.John Wiley &Sons,Inc.,2013:89-94.
    [267]Wang F X,Li B.Origin of deflection of precipitates during interaction with a migrating twin boundary in magnesium alloys[J].Computational Materials Science,2018,154:472-480.
    [268]Fan H,Zhu Y,El-Awady J A,Raabe D.Precipitation hardening effects on extension twinning in magnesium alloys[J].International Journal of Plasticity,2018,106:186-202.
    [269]Kishida K,Inoue A,Yokobayashi H,Inui H.Deformation twinning in a Mg-Al-Gd ternary alloy containing precipitates with a long-period stacking-ordered(LPSO)structure[J].Scripta Materialia,2014,89:25-28.
    [270]Hidalgo-Manrique P,Robson J D,Pérez-Prado M T.Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements:A quantitative study[J].Acta Materialia,2017,124(Supplement C):456-467.
    [271]Barnett M R,Wang H,Guo T.An Orowan precipitate strengthening equation for mechanical twinning in Mg[J].International Journal of Plasticity,2019,112:108-122.
    [272]Brown L M,Stobbs W M.The work-hardening of copper-silica[J].Philosophical Magazine 1971,23(185):1185-1199.
    [273]Robson J D.The effect of internal stresses due to precipitates on twin growth in magnesium[J].Acta Materialia,2016,121(Supplement C):277-287.
    [274]Bate P,Roberts W T,Wilson D V.The plastic anisotropy of two-phase aluminium alloys—I.Anisotropy in unidirectional deformation[J].Acta Metallurgica,1981,29(11):1797-1814.
    [275]Fan H,Zhu Y,Wang Q.Effect of precipitate orientation on the twinning deformation in magnesium alloys[J].Computational Materials Science,2018,155:378-382.
    [276]Fan H,El-Awady J A.Hardening effects of precipitates with different shapes on the twinning in magnesium alloys[C].TMS 2019 148th Annual Metting &Exhibition,San Antonio,USA,March 10-14,2019:257-261.
    [277]Wang F,Bhattacharyya J J,Agnew S R.Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals,application to magnesium alloys[J].Materials Science and Engineering:A,2016,666:114-122.
    [278]http://www.mm.ethz.ch/research_QC.html.
    [279]Kresse G,Furthmüller J.Efficient iterative schemes for\textit{ab initio}total-energy calculations using a plane-wave basis set[J].Physical Review B,1996,54(16):11169-11186.PRB
    [280]Kresse G,Hafner J.Ab initio molecular dynamics for liquid metals[J].Physical Review B,1993,47(1):558-561.PRB
    [281]Yasi J A,Hector L G,Trinkle D R.First-principles data for solid-solution strengthening of magnesium:From geometry and chemistry to properties[J].Acta Materialia,2010,58(17):5704-5713.
    [282]Ghazisaeidi M,Hector Jr L G,Curtin W A.Firstprinciples core structures ofedge and screw dislocations in Mg[J].Scripta Materialia,2014,75(0):42-45.
    [283]Magana L F,Vazquez G J.Ab initio calculation of the elastic constants of magnesium[J].Journal of Physics:Condensed Matter, 1995, 7(30):L393-L396.
    [284] Wang Y,Chen L Q,Liu Z K,Mathaudhu S N.First-principles calculations of twin-boundary and stacking-fault energies in magnesium[J].Scripta Materialia,2010,62(9):646-649.
    [285]Itakura M,Kaburaki H,Yamaguchi M,Tsuru T.Novel cross-slip mechanism of pyramidal screw dislocations in magnesium[J].Physical Review Letters,2016,116(22):225501.
    [286]Liu Y,Ren H,Hu W C,Li D J,Zeng X Q,Wang K G,Lu J.First-principles calculations of strengthening compounds in magnesium alloy:ageneral review[J].Journal of Materials Science &Technology,2016,32(12):1222-1231.
    [287]Ramprasad R,Batra R,Pilania G,Mannodi-Kanakkithodi A,Kim C.Machine learning in materials informatics:recent applications and prospects[J].npj Computational Materials,2017,3(1):54.
    [288]Glosli J N,Richards D F,Caspersen K J,Rudd R E,Gunnels J A,Streitz F H.Extending stability beyond CPU millennium:a micron-scale atomistic simulation of Kelvin-Helmholtz instability[C].SC'07:Proceedings of the 2007 ACM/IEEE Conference on Supercomputing,2007:1-11.
    [289]Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.
    [290]Liu X Y,Adams J B,Ercolessi F,Moriarty J A.EAM potential for magnesium from quantum mechanical forces[J].Modelling and Simulation in Materials Science and Engineering,1996,4(3):293-303.
    [291]Sun D Y,Mendelev M I,Becker C A,Kudin K,Haxhimali T,Asta M,Hoyt J J,Karma A,Srolovitz D J.Crystal-melt interfacial free energies in hcp metals:A molecular dynamics study of Mg[J].Physical Review B,2006,73(2):024116.PRB
    [292]Kim K H,Jeon J B,Lee B J.Modified embedded-atom method interatomic potentials for Mg-X(X=Y,Sn,Ca)binary systems[J].Calphad,2015,48(0):27-34.
    [293]Jelinek B,Groh S,Horstemeyer M F,Houze J,Kim S G,Wagner G J,Moitra A,Baskes M I.Modified embedded atom method potential for Al,Si,Mg,Cu,and Fe alloys[J].Physical Review B,2012,85(24):245102.PRB
    [294]Nogaret T,Curtin W A,Yasi J A,Hector L G,Trinkle D R.Atomistic study of edge and screw〈c+a〉dislocations in magnesium[J].Acta Materialia,2010,58(13):4332-4343.
    [295]Ghazisaeidi M,Curtin W A.Analysis of dissociation of and dislocations to nucleate(10-12)twins in Mg[J].Modelling and Simulation in Materials Science and Engineering, 2013, 21(5):055007.
    [296]Fan H,El-Awady J A,Wang Q.Towards further understanding of stacking fault tetrahedron absorption and defect-free channels-A molecular dynamics study[J].Journal of Nuclear Materials,2015,458(0):176-186.
    [297]Van der Giessen E,Needleman A.Discrete dislocation plasticity:a simple planar model[J].Modelling and Simulation in Materials Science and Engineering,1995,3:689-735.
    [298]庄茁,崔一南,高原,柳占立.亚微米尺度晶体反常规塑性行为的离散位错研究进展[J].力学进展,2011,06:647-667.(Zhuang Z,Cui Y N,Gao Y,Liu Z L.Advances in discrete dislocation mechanism on submicro crystal atypical plasticity[J].Advances in Mechanics,2011,06:647-667.(in Chinese))
    [299]El-Awady J A,Fan H,Hussein A M.Advances in Discrete Dislocation Dynamics Modeling of Size-Affected Plasticity[M]//Weinberger R C,Tucker J G.Multiscale Materials Modeling for Nanomechanics.Cham:Springer International Publishing,2016:337-371.
    [300]Li Z,Hou C,Huang M,Ouyang C.Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect[J].Computational Materials Science,2009,46(4):1124-1134.
    [301]Fan H,Li Z,Huang M.Toward a further understanding of intermittent plastic responses in the compressed single/bi-crystalline micro-pillars[J].Scripta Materialia,2012,66(10):813-816.
    [302]Fan H,Li Z,Huang M,Zhang X.Thickness effects in polycrystalline thin films:Surface constraint versus interior constraint[J].International Journal of Solids and Structures,2011,48(11-12):1754-1766.
    [303]Lu S,Zhang B,Li X,Zhao J,Zaiser M,Fan H,Zhang X.Grain boundary effect on nanoindentation:A multiscale discrete dislocation dynamics model[J].Journal of the Mechanics and Physics of Solids,2019,126:117-135.
    [304]Hu J,Liu Z,Chen K,Zhuang Z.Investigations of shock-induced deformation and dislocation mechanism by a multiscale discrete dislocation plasticity model[J].Computational Materials Science,2017,131:78-85.
    [305]Liu Z L,You X C,Zhuang Z.A mesoscale investigation of strain rate effect on dynamic deformation of single-crystal copper[J].International Journal of Solids &Structures,2008,45(13):3674-3687.
    [306]Fan H,Ngan A H W,Gan K,El-Awady J A.Origin of double-peak precipitation hardening in metallic alloys[J].International Journal of Plasticity,2018,111:152-167.
    [307]Huang M,Zhao L,Tong J.Discrete dislocation dynamics modelling of mechanical deformation of nickelbased single crystal superalloys[J].International Journal of Plasticity,2012,28(1):141-158.
    [308]Srivastava K,El-Awady J A.Deformation of magnesium during c-axis compression at low temperatures[J].Acta Materialia,2017,133:282-292.
    [309]Wei D,Fan H,Tang J,Zhang X.Effect of a vertical twin boundary on the mechanical property of bicrystalline copper micropillars[C].TMS 2019 148th Annual Meeting &Exhibition Supplemental Proceedings,2019:1305-1310.
    [310]Liang S,Zhu Y,Huang M,Li Z.Studying dislocation-induced shielding effect on the crack-tip in polycrystal by discrete dislocation dynamics[J].International Journal of Solids and Structures,2019,156-157:148-162.
    [311]Liang S,Zhu Y,Huang M,Li Z.Simulation on crack propagation vs.crack-tip dislocation emission by XFEM-based DDD scheme[J].International Journal of Plasticity,2019,114:87-105.
    [312]Huang M,Li Z,Wang C.Discrete dislocation dynamics modelling of microvoid growth and its intrinsic mechanism in single crystals[J].Acta Materialia,2007,55(4):1387-1396.
    [313]Roters F,Eisenlohr P,Hantcherli L,Tjahjanto D D,Bieler T R,Raabe D.Overview of constitutive laws,kinematics,homogenization and multiscale methods in crystal plasticity finite-element modeling:Theory,experiments,applications[J].Acta Materialia,2010,58(4):1152-1211.
    [314]Qiao H,Barnett M R,Wu P D.Modeling of twin formation,propagation and growth in a Mg single crystal based on crystal plasticity finite element method[J].International Journal of Plasticity,2016,86:70-92.
    [315]Cheng J,Ghosh S.A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys[J].International Journal of Plasticity,2015,67:148-170.
    [316]Beyerlein I J,ToméC N.A dislocation-based constitutive law for pure Zr including temperature effects[J].International Journal of Plasticity,2008,24(5):867-895.
    [317]Cheng J,Ghosh S.Crystal plasticity finite element modeling of discrete twin evolution in polycrystalline magnesium[J].Journal of the Mechanics and Physics of Solids,2017,99:512-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700