用户名: 密码: 验证码:
羧基化多壁碳纳米管、混合盐及其复合胁迫对水稻幼苗生理特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of carboxylated multi-walled carbon nanotubes,mixed salt,and their combination on physiological characteristics of Oryza sativa seedlings
  • 作者:刘海涛 ; 王曦 ; 刘玲 ; 高彦花 ; 母丹平 ; 陈玉笛
  • 英文作者:Liu Hai-Tao;Wang Xi;Liu Ling;Gao Yan-Hua;Mu Dan-Ping;Chen Yu-Di;School of Biological Engineering,Huainan Normal University;Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes;Huainan Municipal Gardening Administration Bureau;
  • 关键词:水稻 ; 羧基化多壁碳纳米管 ; 碱胁迫 ; 氧化损伤 ; 抗氧化酶 ; 渗透调节 ; 叶绿体色素
  • 英文关键词:Oryza sativa;;Carboxylated multi-walled carbon nanotubes;;Saline-alkali stress;;Oxidative damage;;Antioxidant enzymes;;Osmotic adjustment;;Chloroplast pigment
  • 中文刊名:植物科学学报
  • 英文刊名:Plant Science Journal
  • 机构:淮南师范学院生物工程学院;资源与环境生物技术安徽普通高校重点实验室;淮南市政园林管理局;
  • 出版日期:2019-08-14
  • 出版单位:植物科学学报
  • 年:2019
  • 期:04
  • 基金:安徽省自然科学基金项目(1608085QC50);; 安徽省高校优秀青年人才支持计划(gxyq2019078);; 安徽省高校优秀中青年骨干人才国内外访学研修重点项目(gxfxZD2016202);; 淮南市科技计划项目(2018A29);; 淮南师范学院博士基金项目(51306)~~
  • 语种:中文;
  • 页:132-142
  • 页数:11
  • CN:42-1817/Q
  • ISSN:2095-0837
  • 分类号:S511
摘要
将水稻(Oryza sativa L.)幼苗悬浮培养于含有羧基化多壁碳纳米管MWCNTs-COOH (0、2.5、5.0、10. 0 mg/L)、50 mmol/L混合盐(1NaCl∶9Na_2SO_4∶9NaHCO_3∶1Na_2CO_3),以及MWCNTs-COOH+混合盐的复合溶液中,10 d后检测叶片生理生化指标变化,研究MWCNTs-COOH复合盐碱胁迫对水稻幼苗的毒性及生态风险。结果显示,与对照组相比,MWCNTs-COOH单一组诱导下水稻叶片O_2~(·-)和H_2O_2的产生不明显,而混合盐组和混合盐+MWCNTs-COOH复合组均诱导了O_2~(·-)和H_2O_2产物的大量累积。MWCNTs-COOH与混合盐复合后,加剧了O_2~(·-)和H_2O_2的累积,并有明显的浓度效应。活性氧(ROS)作为信号分子在一定程度上诱导了各处理组部分抗氧化酶(SOD、CAT、POD、APX)活性的升高;与混合盐组相比,低浓度混合盐+MWCNTs-COOH复合组中叶绿素a和胡萝卜素含量呈一定程度的升高; MWCNTs-COOH与混合盐复合后,抑制了叶片中可溶性糖(SS)和脯氨酸(Pro)的合成,致使相对电导率(REC)和丙二醛(MDA)含量显著升高。上述抗氧化酶活性及叶绿素a和胡萝卜素含量的升高对缓解水稻叶片氧化损伤、维持正常的光合电子传递及对过剩光能的热耗散是有益的,是水稻幼苗重要的防御机制。本研究表明MWCNTs-COOH单一处理在一定程度上诱导了水稻叶片的氧化胁迫和应激响应,与混合盐复合后加剧了叶片的氧化胁迫和应激损伤。
        Rice( Oryza sativa L.) seedlings were hydroponically cultivated in different concentrations of carboxylated multi-walled carbon nanotubes( MWCNTs-COOH)( 0,2.5,5.0,and 10.0 mg/L),50 mmol/L mixed salt( 1NaCl:9Na_2SO_4:9 NaHCO3:1 Na_2CO_3),and mixed salt +MWCNTs-COOH for 10 d,respectively. Several physiological and biochemical parameters were then determined to investigate the phytotoxicity and ecotoxicological risks of MWCNTs-COOH and joint exposure with mixed salt on the seedling leaves. Results showed that reactive oxygen species( ROS),including superoxide radical( O_2~(·-)) and hydrogen peroxide( H_2O_2),were induced non-significantly by single MWCNTs-COOH treatment compared with the control.However,O_2~(·-) and H_2O_2 were overproduced in the mixed salt treatment group and in the combined treatment group. Mixed salt combined with MWCNTs-COOH aggravated the accumulation of O_2~(·-) and H_2O_2,with obvious concentration effects. As signaling molecules,ROS enhanced,at least to some extent,the total activities of antioxidant enzymes( i. e.,SOD,CAT,POD,and APX) in the different treatment groups. The contents of chlorophyll-a and carotene somewhat increased under low concentration combined treatment compared with mixed salt treatment. After combination with mixed salt,the synthesis of soluble sugar and proline were inhibited, whereas the relative electrical conductivity and production of malondialdehyde( MDA) were significantly enhanced. The increased activity of antioxidant enzymes and production of chlorophyll-a and carotene are likely crucial defense mechanisms,which are beneficial for the alleviation of oxidative stress and damage,as well as for the maintenance of photosynthetic electron transport and thermal dissipation of excessive light energy in O. sativa seedlings. This study demonstrated that single MWCNTs-COOH treatment caused a certain level of oxidative stress and defense response in the leaves of O. sativa seedlings; furthermore, combined MWCNTs-COOH and mixed salt treatment aggravated oxidative stress and damage.
引文
[1]Deinlein U,Stephan AB,Horie T,Luo W,Xu GH,Schroeder JI.Plant salt-tolerance mechanisms[J].Trends Plant Sci,2014,19(6):371-379.
    [2]Zhu JK.Plant salt tolerance[J].Trends Plant Sci,2001,6(2):66-71.
    [3]沈婧丽,王彬,田小萍,许兴.不同改良模式对盐碱地土壤理化性质及水稻产量的影响[J].江苏农业学报,2016,32(2):338-344.Shen JL,Wang B,Tian XP,Xu X.Effect of improvement modes on physic-chemical characteristics of saline-alkali soil and rice yield[J].Jiangsu Journal of Agriculture Sciences,2016,32(2):338-344.
    [4]田富强.产量红线与耕地红线耦合研究[J].干旱区地理,2017,40(3):640-646.Tian FQ.Coupling of yield red-line and cultivated land red-line[J].Arid Land Geography,2017,40(3):640-646.
    [5]张婷婷,杨美英,王春红,孙合美,齐春艳,侯立刚,武志海.盐胁迫下不同水稻品种渗透调节物质及相关基因的变化[J].西北农林科技大学学报(自然科学版),2016,44(4):39-47.Zhang TT,Yang MY,Wang CH,Sun HM,Qi CY,Hou LG,Wu ZH.Changes in osmolytes and related genes of different rice varieties under saline-alkali stress[J].Journal of Northwest A&F University(Natural Science Edition),2016,44(4):39-47.
    [6]凌启鸿.盐碱地种稻有关问题的讨论[J].中国稻米,2018,24(4):1-2.Ling QH.Discussion on the related problems of rice planting in saline-alkali soil[J].China Rice,2018,24(4):1-2.
    [7]Kibria MG,Hossain M,Murata Y,Hoque MD.Antioxidant defense mechanisms of salinity tolerance in rice genotypes[J].Rice Sci,2017,24(3):155-162.
    [8]董起广,何振嘉,高红贝,雷娜,樊建琼.沿黄地区盐碱地种植水稻土壤理化性质的比较[J].植物资源与环境学报,2017,26(2):110-112.Dong QG,He ZJ,Gao HB,Lei N,Fan JQ.Comparison on soil physicochemical properties of saline and alkaline land planted with Oryza sativa in the area along the Yellow River[J].Journal of Plant Resources and Environment,2017,26(2):110-112.
    [9]De Volder MF,Tawfick SH,Baughman RH,Hart AJ.Carbon nanotubes:present and future commercial applications[J].Science,2013,339(6119):535-539.
    [10]Petersen EJ,Zhang L,Mattison NT,O’Carroll DM,Whelton AJ,Uddin N,et al.Potential release pathways,environmental fate,and ecological risks of carbon nanotubes[J].Environ Sci Technol,2011,45(23):9837-9856.
    [11]Awad YM,Vithanage M,Niazi NK,Rizwan M,Rinklebe J,Yang JE,et al.Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic-and leadcontaminated soil amended with biochars[J/OL].Environ Geochem Health,2017[2018-12-20].https://doi.org/10.1007/s10653-017-9989-3.DOI:10.1007/s10653-017-9989-3.
    [12]Sohn EK,Chung YS,Johari SA,Kim TG,Kim JK,Lee JH,et al.Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms[J].Biomed Res Int,2015,2015(1):1-7.
    [13]Tan XM,Lin C,Fugetsu B.Study on toxicity of multiwalled carbon nanotubes on suspension rice cells[J].Carbon,2009,47(15):3479-3487.
    [14]杨帆,王志春,马红媛,杨福,田春杰,安丰华.东北苏打盐碱地生态治理关键技术研发与集成示范[J].生态学报,2016,36(22):7054-7058.Yang F,Wang ZC,Ma HY,Yang F,Tian CJ,An FH.Research and integrated demonstration of ecological amelioration techniques of saline-sodic land in northeast China[J].Acta Ecologica Sinica,2016,36(22):7054-7058.
    [15]Ghosh M,Bhadra S,Adegoke A,Bandyopadhyay M,Adegoke OA.MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation[J].Mutat Res,2015,774:49-58.
    [16]Hao Y,Ma CX,Zhang ZT,Song YH,Cao WD,Guo J,et al.Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem[J].Environ Pollut,2018,232:123-136.
    [17]Yoshida S,Forno DA,Cock JH,Gomez KA.Laboratory Manual for Physiological Studies of Rice[M].3th ed.Laguna:The International Rice Research Institute,1976:62.
    [18]Tian M,Gu Q,Zhu M.The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus[J].Plant Sci,2003,165:701-707.
    [19]Velikova V,Yordanov I,Edreva A.Oxidative stress and some antioxidant systems in acid rain-treated bean plants:Protective role of exogenous polyamines[J].Plant Sci,2000,151:59-66.
    [20]Giannopolitis CN,Ries SK.Superoxide dismutases:Ⅰ.Occurrence in higher plants[J].Plant Physiol,1977,59(2):309-314.
    [21]Giannopolitis CN,Ries SK.Superoxide dismutases:Ⅱ.Purification and quantitative relationship with water-soluble protein in seedings[J].Plant Physiol,1977,59(2):315-318.
    [22]Abei H.Catalase in vitro[J].Method Enzymol,1984,105(13):121-126.
    [23]李合生,孙群,赵世杰,章文华.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003:164-165,194-197,258-260.
    [24]张以顺,黄霞,陈云凤.植物生理学实验教程[M].北京:高等教育出版社,2009:34-37,135-136.
    [25]赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002:130-131.
    [26]Li Y,Zhang SS,Jiang WS,Liu DH.Cadmium accumulation,activities of antioxidant enzyme,and malondialdehyde(MDA)content in Pistia stratiotes L.[J].Environ Sci Pollut R,2013,20(2):1117-1123.
    [27]何光明,邓兴旺.死亡信号传递:叶绿体与线粒体间信号交流调控植物程序性细胞死亡[J].植物学报,2018,53(4):441-444.He GM,Deng XW.Death signal transduction:chloroplastto-mitochondrion communication regulates programmed cell death in plants[J].Chinese Bulletin of Botany,2018,53(4):441-444.
    [28]Hossain MA,Bhattacharjee S,Armin SM,Qian PP,Xin W,Li HY,et al.Hydrogen peroxide priming modulates abiotic oxidative stress tolerance:insights from ROS detoxification and scavenging[J].Front Plant Sci,2015,6(420):1-42.
    [29]庄绪亮.土壤复合污染的联合修复技术研究进展[J].生态学报,2007,27(11):4871-4876.Zhuang XL.New approaches for remediation of soils with multiple pollutants[J].Acta Ecologica Sinica,2007,27(11):4871-4876.
    [30]Rong H,Wang CR,Yu XR,Fan JB,Jiang P,Wang YC,et al.Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L.seedlings under combined stress of lead and cadmium[J].Ecotox Environ Safe,2018,161:616-623.
    [31]Wang CR,Liu HT,Chen JY,Tian Y,Shi J,Li DD,et al.Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean(Vicia faba L.)seedling under combined stress of lead and cadmium[J].J Hazard Mater,2014,274:404-412.
    [32]Tripathy BC,Oelmüller R.Reactive oxygen species generation and signaling in plants[J].Plant Signal Behav,2012,7(12):1621-1633.
    [33]李格,孟小庆,蔡敬,董婷婷,李宗芸,朱明库.活性氧在植物非生物胁迫响应中功能的研究进展[J].植物生理学报,2018,54(6):951-959.Li G,Meng XQ,Cai J,Dong TT,Li ZY,Zhu MK.Advance in the function of reactive oxygen species in plant responses to abiotic stresses[J].Plant Physiology Journal,2018,54(6):951-959.
    [34]薛盈文,黄寿光,范博文,石新新,阚虎飞,刘鑫,等.低温和UV-B复合胁迫对小麦幼苗抗氧化酶和渗透调节物质的影响[J].麦类作物学报,2017,37(6):834-840.Xue YW,Huang SG,Fan BW,Shi XX,Kan HF,Liu X,et al.Effect of low temperature and UV-B on the antioxidant enzymes and osmotic substances in wheat seedlings[J].Journal of Triticeae Crops,2017,37(6):834-840.
    [35]Groce R.A close view of photosystem[J].Science,2015,348(6238):970-971.
    [36]Demmig-Adams B,Adams WW.Photoprotection in an ecological context:the remarkable complexity of thermal energy dissipation[J].New Phytol,2006,172(1):11-21.
    [37]Campos MKF,Carvalho K,Souza FS,Marur CJ,Pereira LFP,Filho JCB,Vieira LGE.Drought tolerance and antioxidant enzymatic in transgenic‘Swingle’citrumelo plants over-accumulating proline[J].Environ Exp Bot,2011,72:242-250.
    [38]祝一文,赵方贵,成云峰,雷传松,刘新.‘海稻86’耐盐碱胁迫生理机制的初步研究[J].青岛农业大学学报(自然科学版),2018,35(1):32-39.Zhu YW,Zhao FG,Cheng YF,Lei CS,Liu X.The preliminary study on alkali-salt tolerance of‘sea rice 86’and physiological mechanisms[J].Journal of Qingdao Agricultural University(Natural Science Edition),2018,35(1):32-39.
    [39]李子英,丛日春,杨庆山,周健.盐碱胁迫对柳树幼苗生长和渗透调节物质含量的影响[J].生态学报,2017,37(24):8511-8517.Li ZY,Cong RC,Yang QS,Zhou J.Effects of saline-alkali stress on growth and osmotic adjustment substances in willow seedlings[J].Acta Ecologica Sinica,2017,37(24):8511-8517.
    [40]Kocheva KV,Georgiev GI,Kochev VK.An improvement of the dissusion model for assessment of drought stress in plant tissues[J].Physiol Plantarum,2014,150:88-94.
    [41]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.Chen SY.Injury of membrane lipid peroxidation to plant cell[J].Plant Physiology Communications,1991,27(2):84-90.
    [42]Begum P,Ikhtiari R,Fugetsu B.Potential impact of multiwalled carbon nanotubes exposure to the seedling stage of selected plant species[J].Nanomaterials,2014,4(2):203-221.
    [43]Nel A,Xia T,Mdler L,Li N.Toxic potential of materials at the nanolevel[J].Science,2006,311(5761):622-627.
    [44]Shan J,Ji R,Yu YJ,Xie ZB,Yan XY.Biochar,activated carbon,and carbon nanotubes have different effects on fate of14C-catechol and microbial community in soil[J].Sci Rep,2015,5:1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700