用户名: 密码: 验证码:
成都平原西部土壤速效钾含量剖面分布特征及其影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Profile Distribution Characteristics of Soil Available Potassium and Its Influencing Factors in the Western Chengdu Plain
  • 作者:董琴 ; 王昌全 ; 李启权 ; 李冰 ; 黎国阳 ; 徐强 ; 李萌 ; 曾杰熙
  • 英文作者:DONG Qin;WANG Changquan;LI Qiquan;LI Bing;LI Guoyang;XU Qiang;LI Men;ZENG Jiexi;College of Resources and Environment, Sichuan Agricultural University;
  • 关键词:土壤速效钾 ; 空间变异 ; 影响因素 ; 成都平原
  • 英文关键词:soil available potassium;;spatial variation;;influencing factors;;Chengdu Plain
  • 中文刊名:水土保持学报
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:四川农业大学资源学院;
  • 出版日期:2019-04-15
  • 出版单位:水土保持学报
  • 年:2019
  • 期:02
  • 基金:国家科技支撑计划项目(SQ2018YFD080041);; 四川省教育厅科研项目(2017SZ0188)
  • 语种:中文;
  • 页:178-184
  • 页数:7
  • CN:61-1362/TV
  • ISSN:1009-2242
  • 分类号:S158
摘要
为了准确获取土壤钾素剖面分布信息,掌握区域钾素运移和合理精准施肥的需要,基于134个剖面(0—100 cm)采样数据,运用经典统计学和地统计学方法探讨了成都平原西部土壤速效钾剖面分布特征,并对比分析了成土母质、土壤类型和土地利用方式对土壤速效钾剖面分布的影响。结果表明:土壤速效钾含量在水平方向上具有一定的规律性,其高值密集在金马河以南的崇州、邛崃和大邑区域,而低值出现在都江堰—郫县—温江一带,低值区面积占研究区面积50%以上,总体呈现由西南部向东北部显著降低趋势。垂直方向上0—100 cm随土层逐渐降低,表层土壤显著高于下层土壤(P<0.05),下层土壤变幅(最大值与最小值之差)随土壤深度的增加逐渐减小。0—100 cm不同土层块金系数均为25%~75%,表现为中等程度空间自相关性,受结构性因素和随机因素共同影响。表层土壤速效钾空间分布受成土母质、土壤类型和土地利用方式共同影响,土壤类型的解释能力最高,分别是成土母质和土地利用方式的1.97,2.58倍;下层土壤主要受成土母质和土地利用方式的影响,影响程度均随着土层深度的增加而增加,相较之下,母质的影响程度增加更为显著。总体来看,成土母质和土地利用方式是影响研究区土壤速效钾剖面分布的主控因素。
        In order to accurately obtain the distribution information of soil potassium in the soil profile, and know well the regional migration of potassium and the need of reasonable precision fertilization, 134 soil profile(0—100 cm) samples were collected. Based on the sampling data, the distribution characteristics of soil available potassium in soil profiles of the western part of Chengdu Plain were studied through classical statistical and geostatistical methods, and the effects of parent material, soil type and land use on the available potassium distribution were compared and analyzed. The results found that the soil available potassium content had certain regularity in the horizontal direction, and its high value was concentrated in the Chongzhou, Qionglai and Dayi areas, which were south parts of the Jinma River, while the low value appeared in the Dujiangyan-Pixian-Wenjiang area. The area of the low-value-area accounted for more than 50% of the study area, and the overall showed a significant downward trend from the southwest to the northeast. In the vertical direction, the content of soil available potassium decreased with the increasing of soil depth in the range of 0 to 100 cm, and the available potassium content in top soil was significantly higher than that in the lower soil layer(P<0.05). The amplitude of soil available potassium content(the difference between the maximum and the minimum) in the lower soil gradually decreased with the increasing of soil depth. The nugget coefficients of different soil layers within 0 to 100 cm were between 25% and 75%, showing moderate spatial autocorrelation, which were affected by structural and random factors. The spatial distribution of available potassium in surface soil was affected by soil parent material, soil type and land use pattern, and the explanatory ability of soil type was the highest, which was 1.97 and 2.58 times that of soil parent material and land use pattern, respectively. The spatial distribution of available potassium in lower layer soil was mainly affected by the parent material and land use pattern, and the impact extents both increased with the increasing of soil depth, however the influence of parent material was more significant. The results showed that the parent material and land use pattern were the main controlling factors, which affecting the profile distribution of soil available potassium in the study area.
引文
[1] Du H, Wang K, Peng W, et al. Spatial heterogeneity of soil mineral oxide components in depression between karst hills, Southwest China[J].Chinese Geographical Science,2014,24(2):163-179.
    [2] 刘淑娟,张伟,王克林,等.桂西北喀斯特峰丛洼地表层土壤养分时空分异特征[J].生态学报,2011,31(11):3036-3043.
    [3] 徐剑波,宋立生,彭磊,等.土壤养分空间估测方法研究综述[J].生态环境学报,2011,20(8):1379-1386.
    [4] Ouyang W, Huang H, Hao F, et al. Synergistic impacts of land-use change and soil property variation on non-point source nitrogen pollution in a freeze-thaw area[J].Journal of Hydrology,2013,495(495):126-134.
    [5] 田晓飞,李成亮,张民,等.钾肥用量对大蒜-棉花套作体系产量和土壤钾素有效性的影响[J].水土保持学报,2017,31(3):277-282.
    [6] Dent D. Soil as world heritage[M].Berlin, Germany: Springe Netherlands,2014.
    [7] Sardans J,Pe·uelas J. Potassium: Aneglected nutrient in global change[J].Global Ecology and Biogeography,2015,24(3):261-275.
    [8] 徐莉,闫俊杰,陈晨,等.新疆察布查尔县农耕层土壤养分空间特征及其与地形因子的关系[J].水土保持通报,2018,38(4):38-45.
    [9] 张玲娥,双文元,云安萍,等.30年间河北省曲周县土壤速效钾的时空变异特征及其影响因素[J].中国农业科学,2014,47(5):923-933.
    [10] 欧勇胜.成都平原土壤钾素空间变异及其模拟研究[D].四川雅安:四川农业大学,2006.
    [11] 何鑫,王昌全,高成凤,等.成都平原大尺度下土壤质量空间变异研究[J].安全与环境学报,2009,9(4):85-91.
    [12] Blanchet G, Libohova Z, Joost S, et al. Spatial variability of potassium in agricultural soils of the canton of Fribourg, Switzerland[J].Geoderma,2017,290:107-121.
    [13] Taghizadeh-Toosi A, Olesen J E, Kristensen K, et al. Changes in carbon stocks of Danish agricultural mineral soils between 1986 and 2009[J].European Journal of Soil Science,2014,65(5):730-740.
    [14] Antwi M, Duker A A, Fosu M, et al. Geospatial approach to study the spatial distribution of major soil nutrients in the Northern region of Ghana[J].Cogent Geoscience,2016,2(1):1-13.
    [15] 李龙,姚云峰,秦富仓.黄花甸子流域土壤全氮、速效磷、速效钾的空间变异[J].生态学杂志,2015,34(2):373-379.
    [16] 陈涛,常庆瑞,刘京,等.黄土高原南麓县域耕地土壤速效养分时空变异[J].生态学报,2013,33(2):554-564.
    [17] 四川省土壤普查办公室,四川省第二次土壤普查数据资料汇编[M].成都:四川省农牧厅,1992.
    [18] 古翼瑞.成都平原以水稻为核心的种植模式综合效益分析与评价[D].成都:四川农业大学,2016.
    [19] 刘英华.成都平原区土壤质量时空变异研究[D].成都:四川农业大学,2004.
    [20] 陈印军,王晋臣,肖碧林,等.我国耕地质量变化态势分析[J].中国农业资源与区划,2011,32(2):1-5.
    [21] 刘禹池,冯文强,秦鱼生,等.长期秸秆还田与施肥对成都平原稻-麦轮作下作物产量和土壤肥力的影响[J].西南农业学报,2015,28(1):240-247.
    [22] 艾尤尔·亥热提,王勇辉,海米提·依米提.艾比湖湿地土壤速效钾空间变异性分析[J].土壤通报,2015,46(2):375-381.
    [23] 吴若玉.环溪河流域土壤钾素空间分布及影响因素研究[D].成都:四川农业大学,2007.
    [24] 师江澜,李秀双,王淑娟,等.长期浅耕与秸秆还田对关中平原冬小麦—夏玉米轮作土壤钾素含量及层化比率的影响[J].应用生态学报,2015,26(11):3322-3328.
    [25] He P, Yang L, Xu X, et al. Temporal and spatial variation of soil available potassium in China (1990—2012)[J].Field Crops Research,2015,173:49-56.
    [26] 闫良.不同母质发育的砖红壤中氮、钾垂直运移特征初步研究[D].海口:海南大学,2011.
    [27] 王婷,周海燕,李利利,等.长期不施化学钾肥对陇东旱塬作物产量及土壤速效钾含量的影响[J].中国土壤与肥料,2015(5):44-49.
    [28] 庞奖励,张卫青,黄春长,等.渭北高原土地利用变化对土壤剖面发育的影响:以洛川—长武塬区耕地转为苹果园为例[J].地理学报,2010,65(7):789-800.
    [29] Blanchet G, Libohova Z, Joost S, et al. Spatial variability of potassium in agricultural soils of the canton of Fribourg, Switzerland[J].Geoderma,2017,290:107-121.
    [30] 马伟龙,任平,曾雨晴.成都平原经济区耕地生态系统涵养水源价值时空演变特征[J].中国土地科学,2015,29(10):85-94.
    [31] 周晓阳,周世伟,徐明岗,等.中国南方水稻土酸化演变特征及影响因素[J].中国农业科学,2015,48(23):4811-4817.
    [32] Guan F, Xia M, Tang X, et al. Spatial variability of soil nitrogen, phosphorus and potassium contents in Moso bamboo forests in Yong'an City, China[J].Catena,2017,150:161-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700