用户名: 密码: 验证码:
施磷对干旱胁迫下苦荞生长及磷素吸收分配的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of phosphorus on growth and phosphorus absorption and distribution in Fagopyrum tataricum under drought stress
  • 作者:赵海霞 ; 裴红宾 ; 张永清 ; 高振峰 ; 董馥慧
  • 英文作者:ZHAO Haixia;PEI Hongbin;ZHANG Yongqing;GAO Zhenfeng;DONG Fuhui;College of Life Sciences,Shanxi Normal University;College of Geographical Sciences,Shanxi Normal University;Shanxi Academy of Agricultural Sciences;
  • 关键词:苦荞 ; 干旱胁迫 ; 施磷 ; 磷素积累 ; 产量
  • 英文关键词:Fagopyrum tataricum;;drought stress;;phosphorus application;;phosphorus accumulation;;yield
  • 中文刊名:干旱区资源与环境
  • 英文刊名:Journal of Arid Land Resources and Environment
  • 机构:山西师范大学生命科学学院;山西师范大学地理科学学院;山西省农业科学院农产品贮藏保鲜研究所;
  • 出版日期:2018-12-26
  • 出版单位:干旱区资源与环境
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目(31571604);; 山西师范大学科技开发与应用基金(YK1502)资助
  • 语种:中文;
  • 页:179-185
  • 页数:7
  • CN:15-1112/N
  • ISSN:1003-7578
  • 分类号:S517
摘要
以苦荞(Fagopyrum tataricum L.)为试验材料,试验设水、磷二因素,采用完全随机设计盆栽试验,研究不同水分处理下施磷对苦荞生长、磷素吸收分配及产量的影响,为干旱区苦荞高产、稳产栽培提供水肥管理的理论依据。结果表明:1)在干旱胁迫(W2)条件下,苦荞株高、茎粗、叶面积、地上部干重、根系表面积、平均直径、根体积、总根长和根干重均明显降低;根系SOD、POD、MDA、可溶性糖和脯氨酸含量显著提高;根、茎部位磷素积累量随施磷量增加而增多,而叶、花部位在P2水平下达到最高;花簇数、单株粒重、千粒重和产量均显著降低。2)相同水分条件下,施磷对苦荞地上和地下部分的生长均有促进作用,并显著增加了W2条件下根系主根长,且均表现为P2(0. 2g·kg~(-1))水平效果最优;随施磷量的增加,根系可溶性糖和脯氨酸含量为先下降后上升,MDA含量逐渐降低,SOD、POD活性与苦荞产量及各构成要素均呈先升后降的趋势,P2(0. 2g·kg~(-1))处理显著提高苦荞产量。结论:适量施磷有利于提高苦荞植株抗旱性,促进植株生长发育和产量形成。在本试验条件下,P2(0. 2g·kg~(-1))处理在干旱胁迫下更利于苦荞生长与产量的形成。
        In order to provide theoretical basis for the management of water and fertilizer for the high and stable yield of Fagopyrum tataricum in the hilly area,to explore the effect of drought stress and P application on the growth,absorption and distribution,and yield of F. tataricum,pot experiment was conducted under greenhouse condition. The results showed that drought stress( W2) restricted the growth of F. tataricum,such as plant height,the stem diameter,leaf area and dry weight of shoot. In addition,root surface area,mean diameter,root volume,total root length and dry weight of roots were decreased significantly. However,the activities of SOD and POD,the contents of MDA,soluble sugar and proline in roots were increased significantly,and the root and stem accumulation increased with the increase of phosphorus under W2; the accumulation of leaf and flower were the highest at P2 level; the number of flower clusters,grain weight per plant,1000-grainweight and yield were decreased significantly. Under the same water treatment,phosphorus application promoted the growth of the aboveground and underground parts of F. tataricum,and especially the main root length was increased significantly. The effect of P2(0. 2 g·kg~(-1)) was the best. While,the content of soluble sugar and proline first decreased and then increasedwith the increase of phosphorus,the MDA content decreased gradually. The activities of SOD and POD,and yield of F. tataricum and its constituents were increased firstly and then decreased with the increase of phosphorus. The yield of buckwheat was the highest at P2(0. 2 g·kg~(-1)) level. Conclusion: the suitable amount of phosphorus can improve the drought resistance of F. tataricum and promote the growth and yield of plant. In our study,P2(0. 2 g·kg~(-1)) treatment was more beneficial to the growth and yield formation of F. tataricum
引文
[1]张永清,苗果园.水分胁迫条件下有机肥对小麦根苗生长的影响[J].作物学报,2006,32(6):811-816.
    [2]Sytar O,Brestic M,Zivcak M,et al. The contribution of buckwheat genetic resources to health and dietary diversity[J]. Current Genomics,2016,17(3):193-206.
    [3]Wang Y,Campbell C G. Tartary buckwheat breeding(Fagopyrum tataricum,L. Gaertn.)through hybridization with its Rice-Tartary type[J].Euphytica,2007,156(3):399-405.
    [4]Zhou M,Wang C,Qi L,et al. Ectopic expression of Fagopyrum tataricum,Ft MYB12,improves cold tolerance in Arabidopsis thaliana[J]. Journal of Plant Growth Regulation,2015,34(2):362-371.
    [5]汪灿,胡丹,杨浩,等.苦荞主要农艺性状与产量关系的多重分析[J].作物杂志,2013(6):18-22.
    [6]徐笑宇,方正武,杨璞,等.苦荞遗传多样性分析与核心种质筛选[J].干旱地区农业研究,2015,33(1):268-277.
    [7]侯雅君,张宗文,吴斌,等.苦荞种质资源AFLP标记遗传多样性分析[J].中国农业科学,2009,42(12):4166-4174.
    [8]田秀红,任涛.苦荞麦的营养保健作用与开发利用[J].中国食物与营养,2007(10):44-46.
    [9]胡丽雪.苦荞幼苗对铅铝胁迫的生理生化反应及其矫治[D].贵阳:贵州师范大学,2014.
    [10]陈鹏,张德玖,李玉红,等.水分胁迫对苦荞幼苗生理生化特性的影响[J].西北农业学报,2008,17(5):204-207.
    [11]张楚,张永清,路之娟,等.低氮胁迫对不同苦荞品种苗期生长和根系生理特征的影响[J].西北植物学报,2017,37(7):1331-1339.
    [12]杜彩艳,段宗颜,潘艳华,等.干旱胁迫对玉米苗期植株生长和保护酶活性的影响[J].干旱地区农业研究,2015,33(3):124-129.
    [13]马富举,李丹丹,蔡剑,等.干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J].应用生态学报,2012,23(3):724-730.
    [14]郭数进,杨凯敏,霍瑾,等.干旱胁迫对大豆鼓粒期叶片光合能力和根系生长的影响[J].应用生态学报,2015,26(5):1419-1425.
    [15]路之娟,张永清,张楚.干旱胁迫对不同苦荞品种苗期生长和根系生理特征的影响[J].西北植物学报,2018,38(1):112-120.
    [16]Burman U,Garg B K,Kathju S. Effect of phosphorus application on cluster bean under different intensities of water stress.[J]. Journal of Plant Nutrition,2009,32(4):668-680.
    [17]Santos M G D,Ribeiro R V,Oliveira R F D,et al. Gas exchange and yield response to foliar phosphorus application in Phaseolus vulgaris L.under drought Resposta das trocas gasosas e da produtividadeàaplica92o foliar de fósforo em Phaseolus vulgaris L. sob seca[J]. Brazilian Journal of Plant Physiology,2004,16(3):171-179.
    [18]马祥庆,梁霞.植物高效利用磷机制的研究进展[J].应用生态学报,2004,15(4):712-716.
    [19]Cortina J,Vilagrosa A,Trubat R. The role of nutrients for improving seedling quality in drylands[J]. New Forests,2013,44(5):719-732.
    [20]白文琴.氮磷钾对苦荞物质积累及产量调控效应的研究[D].杨凌:西北农林科技大学,2016.
    [21]赵鑫,邓妍,陈少锋,等.氮磷肥配施对旱地苦荞产量及水肥利用率的影响[J].华北农学报,2016,31(s1):350-355.
    [22]卢闯,逢焕成,赵长海,等.水分胁迫下施磷对潮土玉米苗期叶片光合速率、保护酶及植株养分含量的影响[J].中国生态农业学报,2017,25(2):239-246.
    [23]曾广伟,林琪,杜金哲,等.不同土壤水分条件下施磷量对小麦旗叶衰老及产量的影响[J].中国土壤与肥料,2010(2):35-40.
    [24]张志良,瞿伟菁,李小方.植物生理学实验指导(第4版)[M].北京:高等教育出版社,2009:32-227.
    [25]杨俊兴,张彤,吴冬秀.磷素营养对植物抗旱性的影响[J].广东微量元素科学,2003,10(12):13-19.
    [26]张岁岐,山仑.磷素营养和水分胁迫对春小麦产量及水分利用效率的影响[J].西北农业学报,1997,6(1):22-25.
    [27]庞春花,张紫薇,张永清.水磷耦合对藜麦根系生长、生物量积累及产量的影响[J].中国农业科学,2017,50(21):4107-4117.
    [28]赵长海,逄焕成,李玉义.水磷互作对潮土玉米苗期生长及磷素积累的影响[J].植物营养与肥料学报,2009,15(1):236-240.
    [29]Ehdaie B,Layne A P,Waines J G. Root system plasticity to drought influences grain yield in bread wheat[J]. Euphytica,2012,186(1):219-232.
    [30]丁红,张智猛,戴良香,等.水氮互作对花生根系生长及产量的影响[J].中国农业科学,2015,48(5):872-881.
    [31]潘晓迪,张颖,邵萌,等.作物根系结构对干旱胁迫的适应性研究进展[J].中国农业科技导报,2017,19(2):51-58.
    [32]李寿田,韩建国,毛培胜,等.水分胁迫和施磷对草地早熟禾生长的影响[J].草原与草坪,2012,32(4):50-55.
    [33]张岁岐,山仑,薛青武.氮磷营养对小麦水分关系的影响[J].植物营养与肥料学报,2000,6(2):147-151.
    [34]马剑,刘贤德,孟好军,等.水分胁迫对文冠果幼苗生长及生理特性的影响[J].干旱区资源与环境,2018,32(1):128-132.
    [35]桑子阳,马履一,陈发菊.干旱胁迫对红花玉兰幼苗生长和生理特性的影响[J].西北植物学报,2011,31(1):109-115.
    [36]井大炜,邢尚军,马海林,等.水分胁迫对欧美I-107杨树苗生理生化特性的影响[J].干旱区资源与环境,2015,29(1):53-58.
    [37]王宝山.生物自由基与植物膜伤害[J].植物生理学报,1988(2):14-18.
    [38]李鑫,张永清,王大勇,等.水氮耦合对红小豆根系生理生态及产量的影响[J].中国生态农业学报,2015,23(12):1511-1519.
    [39]陆虎华,赵浚宇,陈国清,等.磷素施用对糯玉米子粒产量和磷素积累分配的影响[J].玉米科学,2016,24(5):128-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700