用户名: 密码: 验证码:
~(14)C-红霉素在水生生物的吸收运转特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Uptake and Transportation of ~(14)C-Erythromycin in Aquatic Biotas
  • 作者:刘志平 ; 顾鑫 ; 余凯翔 ; 张素芬 ; 叶庆富 ; 王伟
  • 英文作者:LIU Zhiping;GU Xin;YU Kaixiang;ZHANG Sufen;YE Qingfu;WANG Wei;Key Laboratory of Nuclear-Agricultural Science, Ministry of Agriculture/Institute of Nuclear-Agricultural Science, Zhejiang University;
  • 关键词:~(14)C-示踪 ; 红霉素 ; 溶解性有机质(DOM) ; 吸收 ; 运转
  • 英文关键词:~(14)C-tracing;;erythromycin;;dissolved organic matter(DOM);;uptake;;translocation
  • 中文刊名:核农学报
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:浙江大学原子核农业科学研究所/农业部核农学重点实验室;
  • 出版日期:2018-12-20 07:00
  • 出版单位:核农学报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金(21577120);; 国家重点研发计划重点专项(2016YFD0800207)
  • 语种:中文;
  • 页:135-143
  • 页数:9
  • CN:11-2265/S
  • ISSN:1000-8551
  • 分类号:X703
摘要
为探究红霉素在水环境的生物归趋,本试验采用~(14)C示踪法,建立蝌蚪-浮萍模拟水生生态系统和人工蔬菜水培系统,研究红霉素在蝌蚪、浮萍和食用蔬菜体内的吸收转运特征,并探讨2种不同来源[帕霍基腐殖土(PP)和萨旺泥河(SR)]的水体溶解性有机质(DOM)对其生物可利用度的影响。结果表明,20μg·L~(-1)污染水平下,水体中红霉素能够通过表皮吸收进入水生生物,且其在不同生物中的吸收富集特征存在差异。模拟水生生态系统试验表明,纯水中红霉素能够快速为浮萍吸收富集,并于72 h内达到平衡浓度1.35±0.11 nmol·g~(-1)(干重),当水体中有DOM存在时,红霉素在浮萍体内的吸收富集受到显著抑制(P<0.05),且SR较PP抑制作用更强;红霉素在蝌蚪体内随着时间推移不断富集,360 h时浓度达到峰值1.20±0.05 nmol·g~(-1),SR能够显著抑制蝌蚪对红霉素的吸收;SR对红霉素在浮萍和蝌蚪体内吸收的抑制作用更强,这可能与SR较PP更易与红霉素结合有关。水培蔬菜试验结果表明,水体中红霉素在油菜和生菜体内的富集系数分别为1.65±0.18(地上部)和1.36±0.23 L·kg~(-1)(地上部),显著低于蝌蚪和浮萍(58.77±0.63和49.58±4.03 L·kg~(-1)),且可以通过根部吸收运转至水培蔬菜茎叶,但其转运系数均小于1,表明红霉素不易在试验蔬菜体内向上转运;DOM对红霉素在油菜和生菜中的吸收富集无显著影响。本研究为科学评价红霉素的生态安全性提供了理论依据。
        As one of the most frequently used antibiotic drugs, erythromycin(ERY) pollution is ubiquitous in aquatic environment. However, the fate of ERY in aquatic environment has not been fully understood. In this study, the uptake and transportation of~( 14)C-ERY in aquatic plants and animals were studied by~(14)C tracing basing on a simulated duckweed-tadpole aquatic ecosystem and an artificial vegetable hydroponics system. The effects of two(SR and PP) dissolved organic matters(DOM) on the bioaccessibility of ERY to duckweed, tadpole and edible vegetables were also elucidated. The results showed that the waterborne ERY at a concentration of 20 μg L~(-1) was accessible to both the water plants and animals, and different uptake and accumulation patterns were observed between the different biotas. Results from the aquatic ecosystem experiment demonstrated that ERY could be absorbed by duckweed quickly and an apparent equilibrium concentration of 1.35±0.11 nmol·g~(-1) was reached within 72 h. The absorption of ERY in duckweed in treatments with DOM were significantly inhibited compared to the control treatment without DOM, and the inhibition influence is generally greater for treatment with DOM from SR than PP. ERY was continuously accumulated with time in the bodies of tadpole and reached to its maximum concentration(1.20±0.05 nmol·g~(-1)) at the end of 360 h exposure. The accumulation of ERY in tadpole was inhibited when the SR was present in water. The greater inhibition of ERY absorption by SR than PP could be attributed to the higher bonding rate between SR and ERY. The bioaccumulation coefficients of ERY in duckweed, tadpole, rape and lettuce were 58.77±0.63 and 49.58±4.03, 1.65±0.18(shoot) and 1.36±0.23(shoot) L·kg~(-1), respectively. The translocation factors of ERY in both the lettuce and pakchoi were < 1, which potentially suggesting that ERY may not be tending to be transported upward. The presence of DOM had no significant influence on the accumulation of ERY in lettuce or pakchoi. This study reported the effect of DOM on the uptake and accumulation of ERY in aquatic organisms for the first time, and the absorption and accumulation characteristics of ERY in edible vegetables were firstly studied. It is of great significance for evaluating the ecological safety of ERY more precisely.
引文
[1] Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data[J]. Journal of Antimicrobial Chemotherapy, 2004, 53(1): 28-52
    [2] 赵方凯, 杨磊, 乔敏, 李守娟, 孙龙. 土壤中抗生素的环境行为及分布特征研究进展[J]. 土壤, 2017, 49(3): 428-436
    [3] Du J, Zhao H X, Liu S S, Xie H J, Wang Y, Chen J W. Antibiotics in the coastal water of the South Yellow Sea in China: occurrence, distribution and ecological risks[J]. Science of the Total Environment, 2017, 595: 521-527
    [4] 牛牮. 红霉素原料药市场现状与发展趋势分析[J]. 中国市场, 2014(10): 109-110
    [5] Xu W, Zhang G, Li X, Zou S, Li P, Hu Z, Li J. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China[J]. Water Research, 2007, 41(11): 4526-4534
    [6] Hirsch R, Ternes T, Haberer K, Kratz K L. Occurrence of antibiotics in the aquatic environment[J]. Science of The Total Environment, 1999, 225(1/2): 109-118
    [7] Schlüsener M P, Bester K. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil[J]. Environmental Pollution, 2006, 143(3): 565-571
    [8] 梁惜梅, 施震, 黄小平. 珠江口典型水产养殖区抗生素的污染特征[J]. 生态环境学报, 2013, 22(2): 304-310
    [9] Kolpin D W, Furlong E T, Meyer M T, Thurman E M, Zaugg S D, Barber L B, Buxton H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams,1999-2000: a national reconnaissance [J]. Environmental Science & Technology, 2002, 36(6): 1202-1211
    [10] Leung H, Minh T, Murphy M, Lam J C, So M, Martin M, Lam P K, Richardson B. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China[J]. Environmental International, 2012, 42(1): 1-9
    [11] 徐维海, 张干, 邹世春, 李向东, 刘玉春. 香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其季节变化 [J]. 环境科学, 2016, 27(12): 2458-2462
    [12] Li W, Shi Y, Gao L, Liu J, Cai Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89(11): 1307-1315
    [13] 伍银爱, 杨琛, 唐婷, 郭学涛, 党志. 红霉素在模拟水生生态系统中的分布特征[J]. 环境科学学报, 2015, 35(3): 897-902
    [14] USEPA. Data Reporting for Environmental Chemistry Methods[S]. US: USEPA,1996
    [15] Post W M, Peng T H, Manuel W R, King A W, Dale V H, Deangelis D L. The global carbon cycle[J]. American Scientist, 1990, 78(4): 310-326
    [16] Bourbonniere K A. Distribution patterns of dissolved organic matter fractions in natural waters from Canada [J]. Organic Geochemistry, 1989, 14(1): 97-107
    [17] Lam B, Baer A, Alaee M, Lefebvre B, Moser A, Williams A, Simpson A J. Major structural components in freshwater dissolved organic matter[J]. Environmental Science & Technology, 2007, 41(24): 8240-8247
    [18] Mayer P, Fernqvist M M, Christensen P S, Karlson U, Trapp S. Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions[J]. Environmental Science & Technology, 2007, 41(17): 6148-6155
    [19] Yu H, Huang G H, An C J, Wei J. Combined effects of DOM extracted from site soil/compost and biosurfactant on sorption and desoprtions of PAHs in a soil-water system[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 883-890
    [20] Liu Y Z, Yang C H, Cheng P K, He X J, Zhu Y X, Zhang Y. Influences of humic acid on the bioavailability of phenanthrene and alkyl phenanthrenes to early life stages of marine medaka (Oryzias melastigma)[J]. Environmental Pollution, 2016, 210: 211-216
    [21] Chen Z Y, Zhang Y J, Gao Y Z, Boyd S A, Zhu D Q, Li H. Influence of dissolved organic matter on tetracycline bioavailability to an antibiotic-resistant bacterium[J]. Environmental Science & Technology, 2015, 49(18): 10903-10910
    [22] 唐胜华, 叶庆富, 王伟.14C-红霉素在土壤中的吸附解吸和淋溶特性[J]. 核农学报, 2017, 31(12): 2460-2468
    [23] Wang H Y, Yang Z, Liu R Y, Fu Q G, Zhang S F, Cai ZQ, Li J Y, Zhao X J, Ye Q F, Wang W, Li Z. Stereoselective uptake and distribution of the chiral neonicotinoid insecticide, Paichongding, in Chinese pakchoi (Brassica campestrisssp chinenesis)[J]. Journal of Hazardous Materials, 2013, 262(22): 862-869
    [24] He Y P, Nie E G, Li C M, Ye Q F, Wang H Y. Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions[J]. Environmental Pollution, 2016, 220(Pt A): 400-406
    [25] 王蕾, 刘济宁, 石利利, 单正军. PBT物质危害评估与环境管理发展概况[J]. 环境科学与管理, 2012, 37(2):11-18
    [26] Lemon G D, Posluszny U, Husband B C. Potential and realized rates of vegetative reproduction in Spitodela polyrhiza, Lemna minor, and Wolffia borealis[J]. Aquatic Botany, 2001, 70(1): 79-87
    [27] Pomati F, Netting A G, Calamari D, Neilan B A. Effects of erythromycin, tetracycline and ibuprofen on the growth of synechocystis sp and Lemna minor[J]. Aquatic Toxicology, 2004, 67(4): 387-396
    [28] 赛林霖, 薄存香, 李兰波, 谢琳, 郭启明. 高效氯氰菊酯对非洲爪蟾蝌蚪生存和变态发育影响[J]. 中国职业医学, 2014, 5(4): 2095-2619
    [29] Briggs G G, Bromilow R H, Evans A A. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley[J]. Journal of Pesticide Science, 1982, 13(5): 495-504
    [30] 何欢, 王占武, 胡栋, 张翠绵, 李洪涛, 贾楠. 根系分泌物与微生物互作的研究进展[J]. 河北农业科学, 2011, 15(3): 69-73
    [31] Herber B E, Bertsch P M, Novak J M. Pyrene sorption by water-soluble organic carbon [J]. Environmental Science & Technology, 1993, 27(2): 398-403
    [32] Adi M, Benny C. Sorption of the pharmaceuticals carbamazepine and naproxen to dissolved organic matter: role of structural fractions[J]. Water Research, 2010, 44(3): 981-989
    [33] MacKay A A, Canterbury B. Oxytetracycline sorption to organic matter by metal-bridging[J]. Journal of Environment Quality, 2005, 34(6): 1964-1971
    [34] Sibley S D, Pedersen J A. Interaction of the macrolide antimicrobial clarithromycin with dissolved humic acid[J]. Environmental Science & Technology, 2008, 42(2): 422-428
    [35] Carmosini N, Lee L S. Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials[J]. Chemosphere, 2009, 77(6): 813-820
    [36] Ke R H, Luo J P, Sun L W. Predicting bioavailability and accumulation of organochoolrine pesticides bu Japanese medaka in the presence of humic acid and natural organic matter using passive sampling membranes[J]. Environmental Science & Technoligy, 2007, 41(19): 6698-6703
    [37] Wang M J, Jones K C. Uptake of chlorobenzenes by carrots from spiked and sewage sludge-amended soil[J]. Environmental Science & Technology, 28(7): 1260-1267
    [38] 周江敏, 代静玉, 潘根兴. 土壤中水溶性有机质的结构特征及环境意义[J]. 农业环境科学学报, 2003, 22(6): 731-735
    [39] Blaser P, Sposito G, Holtzclaw K M. Composition and acidic functional group chemistry of an aqueous chestnut leaf litter extract[J]. Soil Science Society of America Journal, 1984, 48(2): 278-283

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700