用户名: 密码: 验证码:
基于Na_2CO_3碱性渣系下的铜锡镍铁合金的氧化吹炼脱锡研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Removal of Tin from Cu-Sn-Ni-Fe Alloys by Oxidation Converting Based on Alkaline Slag System of Na_2CO3
  • 作者:闫允涛 ; 樊友奇 ; 李威
  • 英文作者:YAN Yuntao;FAN Youqi;LI Wei;School of Metallurgical Engineering,Anhui University of Technology;Key Laboratory of Metallurgical Emission Reduction & Resources Recycling,Ministry of Education,Anhui University of Technology;
  • 关键词:脱除率 ; 分离系数 ; 氧化吹炼 ; 造渣剂
  • 英文关键词:removal rate;;separation coefficient;;oxidizing blowing;;slagging agent
  • 中文刊名:有色金属工程
  • 英文刊名:Nonferrous Metals Engineering
  • 机构:安徽工业大学冶金工程学院;安徽工业大学冶金减排与资源综合利用教育部重点实验室;
  • 出版日期:2019-02-25
  • 出版单位:有色金属工程
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金资助项目(51404004)~~
  • 语种:中文;
  • 页:49-54
  • 页数:6
  • CN:10-1004/TF
  • ISSN:2095-1744
  • 分类号:TF811
摘要
粗铜(Cu-Ni-Sn-Fe)作为电子废弃物火法熔炼的主要产物之一,富含多种贵金属,高效分离其中的Ni、Sn等有价元素成为关键。基于碱性渣系开展了氧化吹炼脱锡研究,根据热力学分析结果,试验研究了氧分压、造渣剂过量系数等条件对元素脱除率及分离效果的影响,并对反应机理进行了解。研究结果表明,采用碱性造渣剂有利于降低渣中SnO2的活度,促进锡的氧化脱除同时抑制铜镍的氧化溶解损失。氧分压达到10-5 Pa时,3~4倍造渣剂的量条件下金属的脱除率和分离效果达到最佳。锡脱除率达到90%,Sn-Cu分离系数8.5左右。
        Cu-Ni-Sn-Fe is one of the main products of fire melting of electronic waste.It is rich in various precious metals,and it is the key to efficiently separate the valuable elements such as Ni and Sn.Based on the alkaline slag system,the research on oxidation converting and de-tinning was carried out.According to the results of thermodynamic analysis,the effects of oxygen partial consumption and slag-forming agent excess coefficient on the element removal rate and separation effect were studied,and the reaction mechanism was understood.The results show that the use of alkaline slag-forming agent is beneficial to reduce the activity of SnO2 in slag,promote the oxidation removal of tin and inhibit the oxidative dissolution loss of copper and nickel.When the oxygen partial pressure reaches 10-5 Pa,the removal rate and separation effect of the metal are optimal under the condition of 3 to 4 times the amount of slag-forming agent.The tin removal rate is90%,and the Sn-Cu separation coefficient is about 8.5.
引文
[1]LEME M M V,ROCHA M H,LORA E E S,et al.Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste(MSW)in Brazil[J].Resources Conservation&Recycling,2014,87:8-20.
    [2]周全法.贵金属废弃物的处理技术现状和趋势[J].中国金属通报,2010(47):38-39.ZHOU Quanfa.Present situation and trend of treatment technology of precious metal waste[J].China Metal Bulletin,2010(47):38-39.
    [3]THEO L.Integrated recycling of non-ferrous metals at Boliden Ltd.Ronnskar smelter[C]//IEEE.IEEEInternational Symposium on Electronics&the Environment.1998:42-47.
    [4]HAGELKEN C.Recycling of electronic scrap at Umicore's Integrated Metals Smelter and Refinery[J].World of Metallurgy-ERZMETALL,2006,59(3):152-161.
    [5]JR D L S,DALEY J C,STEPHENS R L.Metal recycling at Kosaka Smelter[M]//Recycling of Metals and Engineered Materials.New Jersey USA:John Wiley&Sons,2013.
    [6]李卫民.铜吹炼技术的进展[J].云南冶金,2008,37(5):24-28.LI Weimin.Advances in copper converting technology[J].Yunnan Metallurgy,2008,37(5):24-28.
    [7]徐霞,赵英.电子废弃物中贵金属提取技术的探讨[J].世界有色金属,2017(5):150-151.XU Xia,ZHAO Ying.Study on the extraction technology of precious metals from e-waste[J].World Nonferrous Metals,2017(5):150-151.
    [8]霍霞.电子废弃物循环再利用研究[J].西部资源,2017(2):207-208.HUO Xia.Research on recycling of electronic waste[J].Westem Resources,2017(2):207-208
    [9]王琨.电子废弃物的资源特点及再生处理技术[J].科技展望,2017,27(7):13-17.WANG KUN.Resource characteristics and recycling technology of electronic waste[J].Science and Technology,2017,27(7):13-17.
    [10]丁江铃,张小平,朱亚茹,等.HCl-CuCl2-NaClO湿法浸取手机元器件中的钯、金[J].中国环境科学,2016,36(12):3711-3716.DING Jiangling,ZHANG Xiaoping,ZHU Yaru,et al.Extraction of Pd,Au from phone components in HCl-CuCl2-NaClO solutions.[J].China Environmental Science,2016,36(12):3711-3716.
    [11]易馨,杨开智,张鹏,等.微生物法从电子废弃物中回收贵金属的研究进展[J].广东化工,2016,43(3):60-61.YI Xin,YANG Kaizhi,ZHANG Peng,et al.Research progress in the recovery of precious metals from electronic waste[J].Guangdong Chemical Industry,2016,43(3):60-61.
    [12]赵玉敏.三菱法炼铜新技术(二)[J].有色矿冶,1996(5):19-23.ZHAO Yumin,Mitsubishi method of copper smelting technology(2)[J].Non-Ferrous Mining and Metallurgy,1996(5):19-23.
    [13]陈登勇,陈雯.浅谈再生铜火法精炼除砷锑[J].矿冶,2017,26(3):56-58.CHEN Dengyong,CHEN Wen,About removing arsenic and antimony from composition brass by pyrorefining[J].Mining&Metallurgy,2017,26(3):56-58.
    [14]杨帆,李钒,姚传好,等.Ti-O体系化合物的生成吉布斯自由能的计算与分析[J].过程工程学报,2012,12(5):857-863.YANG Fan,LI Fan,YAO Chuanhao,et al.Calculation and analysis of the standard gibbs free energy of formation for Ti-O Compounds[J].The Chinese Journal of Process Engineering,2012,12(5):857-863.
    [15]李明周,周孑民,张文海,等.铜闪速吹炼过程多相平衡热力学分析[J].中国有色金属学报,2017,27(7):1493-1503.LI Mingzhou,ZHOU Jiemin,ZHANG Wenhai,et al.Multiphase equilibrium thermodynamics analysis of copper flash converting process[J].The Chinese Journal of Nonferrous Metals,2017,27(7):1493-1503
    [16]吴晓春.粗铜氧化精炼的热力学分析[J].上海有色金属,2013,34(4):139-142.WU Xiaochun.Thermodynamic analysis of crude copper refining by oxidation[J].Shanghai Nonferrous Metals,2013,34(4):139-142.
    [17]刘旸,刘静欣,郭学益.电子废弃物处理技术研究进展[J].金属材料与冶金工程,2014(2):44-49.LIU Yang,LIU Jingxin,GUO Xueyi.Progress of electronic waste treatment[J].Metal Materials and Metallurgy Engineering,2014(2):44-49.
    [18]汪金良,张传福,张文海.CaO-Cu2O-Fe2O3三元渣系组元活度计算模型[J].中国有色金属学报,2009,19(5):955-959.WANG Jinliang,ZHANG Chuanfu,ZHANG Wenhai.Activity calculation model for slag system of CaO-Cu2O-Fe2O3[J].The Chinese Journal of Nonferrous Metals,2009,19(5):955-959.
    [19]邓兆磊,杨亚峰.我国粗锡冶炼技术现状及发展前景[J].中国有色冶金,2015,44(2):34-38.DENG Zhaolei,YANG Yafeng.Status and development prospects of crude tin smelting process in China[J].China Nonferrous Metallurgy,2015,44(2):34-38.
    [20]吉昂.X射线荧光光谱三十年[J].岩矿测试,2012,31(3):383-398.JI Ang.Development of X-ray fluorescence spectrometry in the 30years[J].Rock and Mineral Analysis,2012,31(3):383-398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700