用户名: 密码: 验证码:
不同水平外源碳在稻田土壤中转化与分配的微生物响应特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transformation and Distribution of Soil Organic Carbon and the Microbial Characteristics in Response to Different Exogenous Carbon Input Levels in Paddy Soil
  • 作者:王季斐 ; 童瑶瑶 ; 祝贞科 ; 陈珊 ; 邓扬悟 ; 葛体达 ; 吴金水
  • 英文作者:WANG Ji-fei;TONG Yao-yao;ZHU Zhen-ke;CHEN Shan;DENG Yang-wu;GE Ti-da;WU Jin-shui;School of Resources and Environmental Engineering,Jiangxi University of Science and Technology;Key Laboratory of Subtropical Agriculture Ecology,Institute of Subtropical Agriculture,Chinese Academy of Sciences;College of Environmental Science and Engineering,Central South University of Forestry and Technology;
  • 关键词:稻田土壤 ; 碳转化 ; 外源碳 ; 微生物响应 ; 土壤酶活性
  • 英文关键词:paddy soil;;carbon conversion;;exogenous carbon;;microbial response;;soil enzyme activity
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:江西理工大学资源与环境工程学院;中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室;中南林业科技大学环境科学与工程学院;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(51564023);; 江西省自然科学基金项目(20114BAB213019);; 江西省科技支撑计划项目(20151BBG70005);; 江西理工大学2018年研究生创新基金项目
  • 语种:中文;
  • 页:460-467
  • 页数:8
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:S154.3
摘要
外源碳会改变土壤有机质的转化以及土壤微生物的活性,不同水平的易利用有机碳在稻田土壤中转化与分配的微生物响应特征尚不明确.为阐释外源碳周转过程中的微生物响应特征,选取葡萄糖为典型易利用外源碳,采用13C稳定同位素标记技术,在室内模拟培养实验,基于土壤微生物生物量碳(MBC)设置不同水平葡萄糖碳(0×MBC、0. 5×MBC、1×MBC、3×MBC和5×MBC共5个MBC倍数梯度水平),明确其转化与分配规律;并利用96微孔酶标板荧光分析法,测定参与土壤碳转化过程关键酶纤维二糖水解酶(CBH)和β-葡萄糖苷酶(β-Glu)活性.结果表明,培养2 d时,葡萄糖碳(13C)占可溶性有机碳(13C-DOC)和土壤有机碳(13C-SOC)的比例与其添加量成显著正相关;向13C-MBC的分配在3×MBC处理时达到最大值(18. 96 mg·kg-1),随后降低;13C分配率主要与MBC、Olsen-P和DOC存在显著正相关关系. 60 d时,土壤13C-DOC、13C-MBC和13C-SOC显著下降,分别小于或等于0. 02、2和10 mg·kg-1;与CK相比,添加葡萄糖后CBH酶活性显著提高,其中3×MBC处理提高了22. 6倍,显著高于其它处理(P <0. 05);高量葡萄糖(3×MBC和5×MBC)添加促进了β-Glu酶活性,但促进效果随葡萄糖添加量的增加而减少; NH+4-N、p H、β-Glu和CBH成为13C分配率的主要影响因子.综上,外源碳向土壤有机碳的转化随添加量的增加而增加,改变了土壤酶活性,但微生物对外源碳的利用可能存在一个饱和阈值,饱和阈值之内,有机质的转化速率与添加量成正比;超出饱和阈值,有机质的转化速率反而变慢.因此,适量地添加外源碳有利于提高稻田土壤有机碳,优化作物生长环境质量.
        The turnover of soil organic carbon( SOC) and the activity of soil microbes can be influenced by exogenous carbon.However,microbial response characteristics of the transformation and distribution of available organic carbon under different levels remain unclear in paddy soils.13 C-labeled glucose was used as a typical available exogenous carbon to simulate indoor culture experiments added at different levels of soil microbial biomass carbon( MBC)( 0 × MBC,0. 5 × MBC,1 × MBC,3 × MBC,and 5 ×MBC) to reveal the process of C-transformation and distribution. The characteristics of microbial response in the process of exogenous carbon turnover was also monitored. The 96-well microplate fluorescence analysis was adopted to determine the activities of cellobiose hydrolase( CBH) and β-glucosidase( β-Glu). The results showed that,in 2 d of incubation,the ratio of labeled glucose carbon to dissolved organic carbon(13 C-DOC/DOC) or to SOC(13 C-SOC/SOC) was positively correlated with the amount of glucose added. The incorporation of glucose C(13 C) into MBC reached the highest value( 18. 96 mg·kg-1) at 3 × MBC treatment but decreased thereafter.The13 C allocation rate was mainly positively correlated with MBC,Olsen-P,and DOC. At 60 d,13 C-DOC,13 C-MBC,and13 C-SOC decreased significantly to less than 0. 02 mg·kg-1,2 mg·kg-1,and 10 mg·kg-1 in soil,and it was positively correlated with the amount of glucose added. Compared with CK,CBH enzyme activity increased significantly after the addition of glucose,and for the 3× MBC treatment it was increased by 22. 6 times,which was significantly higher than those of other treatments( P < 0. 05). However,β-Glu enzyme activity increased only in the 3 × MBC and 5 × MBC treatments,wherein it decreased with increasing amounts of addedglucose. NH+4-N,p H,β-Glu,and CBH were the primary factors affecting the distribution rate of13 C. In conclusion,the conversion of exogenous carbon to SOC increased with increased amounts of added organic carbon. This changed the activity of soil enzymes;however,microbial utilization of exogenous carbon may have a saturation threshold. Within the saturation threshold,the conversion rate of organic matter was directly proportional to the amount of added organic matter. When the saturation threshold was exceeded,the conversion rate of organic matter decreased. Therefore,the appropriate addition of exogenous carbon is beneficial,as it can increase SOC in rice fields and improve the quality of the crop growth environment.
引文
[1] Scharlemann J P,Tanner E V,Hiederer R,et al. Global soil carbon:understanding and managing the largest terrestrial carbon pool[J]. Carbon Management,2014,5(1):81-91.
    [2]王清奎.碳输入方式对森林土壤碳库和碳循环的影响研究进展[J].应用生态学报,2011,22(4):1075-1081.Wang Q K. Responses of forest soil carbon pool and carbon cycle to the changes of carbon input[J]. Chinese Journal of Applied Ecology,2011,22(4):1075-1081.
    [3]胡乃娟,张四伟,杨敏芳,等.秸秆还田与耕作方式对稻麦轮作农田土壤碳库及结构的影响[J].南京农业大学学报,2013,36(4):7-12.Hu N J,Zhang S W,Yang M F,et al. Effects of different tillage and straw return on soil carbon pool and soil structure under ricewheat rotation system[J]. Journal of Nanjing Agricultural University,2013,36(4):7-12.
    [4] Huang Y,Sun W. Changes in topsoil organic carbon of croplands in mainland China over the last two decades[J]. Chinese Science Bulletin,2006,51(15):1785-803.
    [5] Bolinder M A,Angers D A,Gregorich E G,et al. The response of soil quality indicators to conservation management[J].Canadian Journal of Soil Science,1999,79(1):37-45.
    [6]汤珍珠,祝贞科,沈冰洁,等.养分化学计量比对稻田土壤葡萄糖矿化及其激发效应的影响[J].土壤学报,2017,54(1):246-254.Tang Z Z,Zhu Z K,Shen B J,et al. Effect of stoichiometric ratio of soil nutrients on mineralization and priming effect of glucose in paddy soil[J]. Acta Pedologica Sinica,2017,54(1):246-254.
    [7] Fontaine S,Bardoux G,Abbadie L,et al. Carbon input to soil may decrease soil carbon content[J]. Ecology Letters,2004,7(4):314-320.
    [8] Tenuta M,Mkhabela M,Tremorin D,et al. Nitrous oxide and methane emission from a coarse-textured grassland soil receiving hog slurry[J]. Agriculture,Ecosystems&Environment,2010,138(1-2):35-43.
    [9]李成芳,寇志奎,张枝盛,等.秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响[J].农业环境科学学报,2011,30(11):2362-2367.Li C F,Kou Z K,Zhang Z S,et al. Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice fields[J]. Journal of Agro-Environment Science,2011,30(11):2362-2367.
    [10]吴金水,葛体达,祝贞科.稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J].地球科学进展,2015,30(9):1006-1017.Wu J S,Ge T D,Zhu Z K. Discussion on the key microbial process of carbon cycle and stoichiometric regulation mechanisms in paddy soils[J]. Advances in Earth Science,2015,30(9):1006-1017.
    [11]周文杰,张鹏,秦嗣军,等.添加葡萄糖和淀粉对盆栽甜樱桃根区土壤碳代谢及根功能的影响[J].应用生态学报,2015,26(11):3300-3308.Zhou W J,Zhang P,Qin S J,et al. Effects of exogenous glucose and starch on soil carbon metabolism of root zone and root function in potted sweet Cherry[J]. Chinese Journal of Applied Ecology,2015,26(11):3300-3308.
    [12] Tian Q X,Yang X L,Wang X G,et al. Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil[J].Biogeochemistry,2016,128(1-2):125-139.
    [13]田慎重,宁堂原,王瑜,等.不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响[J].应用生态学报,2010,21(2):373-378.Tian S Z,Ning T Y,Wang Y,et al. Effects of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field[J]. Chinese Journal of Applied Ecology,2010,21(2):373-378.
    [14]祝贞科,沈冰洁,葛体达,等.农田作物同化碳输入与周转的生物地球化学过程[J].生态学报,2016,36(19):5987-5997.Zhu Z K,Shen B J,Ge T D,et al. Biogeochemical processes underlying the input and turnover of crop assimilative carbon in farmland ecosystems[J]. Acta Ecologica Sinica, 2016, 36(17):5987-5997.
    [15] Yevdokimov I, Ruser R, Buegger F, et al. Microbial immobilisation of13C rhizodeposits in rhizosphere and root-free soil under continuous13C labelling of oats[J]. Soil Biology and Biochemistry,2006,38(6):1202-1211.
    [16] Hütsch B W,Augustin J,Merbach W. Plant rhizodeposition—an important source for carbon turnover in soils[J]. Journal of Plant Nutrition and Soil Science,2002,165(4):397-407.
    [17] Blagodatskaya E,Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:critical review[J]. Biology and Fertility of Soils,2008,45(2):115-131.
    [18]贺云龙,齐玉春,彭琴,等.外源碳输入对陆地生态系统碳循环关键过程的影响及其微生物学驱动机制[J].生态学报,2017,37(2):358-366.He Y L,Qi Y C,Peng Q,et al. Effects of external carbon on the key processes of carbon cycle in a terrestrial ecosystem and its microbial driving mechanism[J]. Acta Ecologica Sinica,2017,37(2):358-366.
    [19]姬强.不同耕作措施和外源碳输入对土壤结构和有机碳库的影响[D].杨凌:西北农林科技大学,2016.Ji Q. Soil structure and organic carbon response to tillage practices and exogenous carbon application[D]. Yangling:Northwest A&F University,2016.
    [20]边雪廉,赵文磊,岳中辉,等.土壤酶在农业生态系统碳、氮循环中的作用研究进展[J].中国农学通报,2016,32(4):171-178.Bian X L,Zhao W L,Yue Z L,et al. Research process of soil enzymes effect on carbon and nitrogen cycle in agricultural ecosystem[J]. Chinese Agricultural Science Bulletin,2016,32(4):171-178.
    [21] Zeglin L H,Stursova M,Sinsabaugh R L,et al. Microbial responses to nitrogen addition in three contrasting grassland ecosystems[J]. Oecologia,2007,154(2):349-359.
    [22]荣勤雷,梁国庆,周卫,等.不同有机肥对黄泥田土壤培肥效果及土壤酶活性的影响[J].中植物营养与飞亮学报,2014,20(5):1168-1177.Rong Q L,Liang G Q,Zhou W,et al. Effects of different organic fertilization on fertility and enzyme activities of yellow clayey soil[J]. Journal of Plant Nutrition and Fertilizer,2014,20(5):1168-1177.
    [23]鲍士旦.土壤农化分析[M].(第三版).北京:中国农业出版社,2000.
    [24] Olsen S R,Cole C,Watanabe F S,et al. Estimation of available phosphorus in soils by extraction with sodium bicarbonate[M].Washington:United States Department of Agriculture,1954.
    [25]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    [26] Wu J,Joergensen R G,Pommerening B,et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil Biology and Biochemistry,1990,22(8):1167-1169.
    [27] Loeppmann S,Blagodatskaya E,Pausch J,et al. Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere[J]. Soil Biology and Biochemistry,2016,92:111-118.
    [28]沈冰洁.氮/磷添加对稻田土壤碳周转的生态化学计量学调控机制[D].长沙:中南林业科技大学,2016.Shen B J. Ecological stoichiometry controls upon carbon turnover in paddy soil in response to N/P addition[D]. Changsha:Central South University of Forestry and Technology,2016.
    [29]王朔林,王改兰,赵旭,等.长期施肥对栗褐土有机碳含量及其组分的影响[J].植物营养与肥料学报,2015,21(1):104-111.Wang S L,Wang G L,Zhao X,et al. Effect of long-term fertilization on organic carbon fractions and contents of cinnamon soil[J]. Journal of Plant Nutrition and Fertilizer,2015,21(1):104-111.
    [30] Kuzyakov Y. Factors affecting rhizosphere priming effects[J].Journal of Plant Nutrition and Soil Science,2002,165(4):382-396.
    [31] Zhu Z K,Ge T D,Luo Y,et al. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil[J]. Soil Biology and Biochemistry,2018,121:67-76.
    [32] Wei X M,Su Y,Zhang H T,et al. Responses of methanotrophic activity, community and EPS production to CH4and O2concentrations in waste biocover soils[J]. Waste Management,2015,42:118-127.
    [33]谭立敏,吴昊,李卉,等.不同施氮量下水稻分蘖期光合碳向土壤碳库的输入及其分配的量化研究:13C连续标记法[J].环境科学,2014,35(5):1933-1938.Tan L M,Wu H,Li H,et al. Input and distribution of rice photosynthesized carbon in the tillering stage under different nitrogen application following continuous13C labeling[J].Environmental Science,2014,35(5):1933-1938.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700