用户名: 密码: 验证码:
西部采煤沉陷地微生物复垦植被种群自我演变规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of micro-reclamation on different planted forest on the vegetation self-succession in the western mining subsidence area
  • 作者:毕银丽 ; 申慧慧
  • 英文作者:BI Yinli;SHEN Huihui;State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology (Beijing);
  • 关键词:西部采煤沉陷区 ; 微生物复垦 ; 种群自我演变 ; 群落多样性 ; 克里金插值
  • 英文关键词:western coal mining subsidence;;mycorrhizal reclamation;;plant community self-successional;;ecological population diversity;;Kriging interpolation
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)煤炭资源与安全开采国家重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金资助项目(51574253);; 首都领军人才资助项目(Z18110006318021);; 越崎杰出学者资助项目
  • 语种:中文;
  • 页:314-322
  • 页数:9
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:Q948;TD88
摘要
菌根真菌可以与陆地上80%以上的植物形成菌根共生体,促进植物在逆境的生长。采煤沉陷地在人工接种菌根真菌后复垦植被种群进行了自我修复与演变,监测采煤沉陷地复垦植物人工接种菌根真菌复垦后4 a对植被种群的自我演变规律影响。以神东矿区大柳塔采煤沉陷地人工林樟子松、沙棘和文冠果为研究对象,野外原位监测植被种类、生活型组成及植被多样性指数,并利用地统计学方法进行克里金插值,对比接种菌根真菌4 a后(+M)与同期种植的自然状态下(CK),两种处理样地内植被种类、数量及其多样性指标,揭示不同人工林在自然状态和人工接种4 a后,区域内物种个体种类、数量和群落多样性差异。研究结果表明:接菌提高樟子松人工林灌木层物种多样性,而降低草本层物种多样性;接菌提高沙棘和文冠果人工林的草本植物群落稳定性和物种多样性及其均匀度,抑制灌木层物种多样性增加。3种人工林微生物复垦4 a后多年生草本占优势地位。接菌组进入多年生草本+灌木的生态组成结构阶段,而对照组则相对滞后,处于一年生草本+多年生草本+灌木的组成结构阶段,接菌促进了生态的演变进程。综合分析植物分布特征,发现植物的最优拟合模型以高斯模型居多,阿尔泰狗娃花、地肤、猪毛蒿、白花草木樨、牛心朴子、野樱桃、油蒿及柠条的预测值精度较好。接菌可促进地稍瓜、阿尔泰狗娃花、牛心朴子、达乌里胡枝子和柠条频度和数量的增加,可能使绳虫实、糙隐子草、苦苣菜和花棒的频度和数量下降。本文为煤矿沉陷区采用微生物修复人工林促进生态群落自我演变进程奠定了初步的研究基础。
        Mycorrhizal fungi can form mycorrhizal symbiote with more than 80% of the plants on land,which is beneficial to the growth of plants in adversity.In order to explore the self-evolution law of reclaimed vegetation population after the artificial inoculation of mycorrhizal fungi in coal mining subsidence,the experiment of artificial inoculation of mycorrhizal fungi is carried out on the reclaimed plants of coal mining subsidence.Pinus sylvestris var.mongolica Litv,Hippophaer hamnoides and Xanthoceras sorbifolia Bunge are the research object in Shendong coal mining subsidence.The species,life type composition and vegetation diversity index of vegetation were monitored by field in-situ monito-ring method.The kriging interpolation was carried out by geostatistics method to obtain the difference of the vegetation species number and diversity index between the inoculation with mycorrhizal fungi after four years and the same period grown under natural conditions.The plantations can make a difference on the individual species,quality and community diversity of other species in the region between the two conditions.The results show that the species diversity of shrub layer in Pinus sylvestris var.mongolica Litv plantation that inoculated with mycorrhizal fungi is bigger than the natural condition.The species diversity of herb layer in Pinus sylvestris var.mongolica Litv plantation that inoculated with mycorrhizal fungi is smaller than the natural condition.The species diversity of shrub layer in Hippophaer hamnoides and Xanthoceras sorbifolia Bunge plantation that inoculated with AM fungi is smaller than the natural condition.The species diversity of herb layer in Hippophaer hamnoides and Xanthoceras sorbifolia Bunge plantation that inoculated with AM fungi is bigger than the natural condition.The perennial herb took over the dominant position in three planted forests.The sites that inoculated with mycorrhizal fungi is on the perennial herb +shrubsstage,while the natural sites is oneyear herb+perennial herb+shrubswhich,which is relatively lagged.The comprehensive analysis of the characteristics of plant distribution found that the best fitting model of plants is Gauss model.In terms of predictive value accuracy,Heteropappus hispidus(Thunb.) Less,Cynanchum thesiodes(Freyn).K.Schum,Artemisia scoparia Waldst.et Kit,Melilotus albus Medic.ex Desr,Cynanchum hancockianum(Maxim.) Al.Iljinski,Caragana intermedia,Artemisiaordosica,Caragana intermediaa and Cornus chinensis Wanger are better than others.Inoculated with mycorrhizal fungi can increase the frequency and quality of Cynanchum thesiodes(Freyn). K. Schum,Heteropappus hispidus(Thunb.) Less,Cynanchum hancockianum(Maxim.) Al. Iljinski,Lespedeza davurica and Caragana intermedia. The frequency and quality of Corispermum declinatum,Cleistogenes squarrosa(Trin.) Keng,Sonchus oleraceus L.and Hedysarum scoparium will decrease because of inoculating with mycorrhizal fungi.The study provides an important basis on revealing the ecological self-succession after artificial plantation by micro-reclamation.
引文
[1]毕银丽,邹慧,彭超,等.采煤沉陷对沙地土壤水分运移的影响[J].煤炭学报,2014,39(S2):490-496.BI Yinli,ZOU Hui,PENG Chao,et al.Effect of mining subsidence on soil water movement in sandy area[J].Journal of China Coal Society,2014,39(S2):490-496.
    [2]李林霞,王瑞君,辜彬,等.海岛矿区岩质边坡植物群落演替中物种多样性的变化[J].生态学杂志,2014,33(7):1741-1747.LI Linxia,WANG Ruijun,GU Bin,et al.Changes in biodiversity during the succession of plant communities on the rocky slopes of mine in islands[J]. Chinese Journal of Ecology,2014,33(7):1741-1747.
    [3] HAYMAND S. Mycorrhiza and crop production[J]. Nature,1980,287(5782):487-488.
    [4]王立,贾文奇,马放,等.菌根技术在环境修复领域中的应用及展望[J].生态环境学报,2010,19(2):487-493.WANG Li,JIA Wenqi,MA Fang,et al. Perspective of mycorrhizal technology application for environmental remediation[J].Ecology&Environmental Sciences,2010,19(2):487-493.
    [5] HARTNETT D C,WILSON G W T. Mycorrhizae influence plant community structure and diversity in tall grass prairie[J].Ecology,1999,80(4):1187-1195.
    [6] URCELAY C,DIAZ S.The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity[J].Ecology Letters,2003,6(5):388-391.
    [7] O’CONNOR P J,SMITH S E,SITH E A.Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herb land[J].New Phytologist,2002,154(1):209-218.
    [8] GRIME J,MACKEY J M L,HILLIER S H,et al.Floristic diversity in a model system using experimental microcosms[J]. Nature,1987,328(30):420-427.
    [9] VAN DER HEIJDEN M G A,KLIRONOMOS J N,URSIC M,et al.Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity[J].Nature,1998,396(6706):69-72.
    [10]张涛,丁效东,冯固.AM真菌对植物群落组成和物种多样性的调控机理[J].生态环境学报,2012,21(12):2024-2030.ZHANG Tao,DING Xiaodong,FENG Gu. Regulation of plant community composition and plant diversity by arbuscular mycorrhizal fungi[J]. Ecology&Environmental Sciences,2012,21(12):2024-2030.
    [11]史立君,刁志凯,刘润进.城市生态系统中AM真菌侵染与群落结构特征[J].应用生态学报,2011,22(7):1939-1943.SHI Lijun,DIAO Zhikai,LIU Ruijin. Community structure features of arbuscular mycorrhizal fungi in urban ecosystems[J]. Chinese Journal of Applied Ecology,2011,22(7):1939-1943.
    [12]胡婵娟,郭雷.植被恢复的生态效应研究进展[J].生态环境学报,2012,21(9):1640-1646.HU Chanjuan,GUO Lei. Advances in the research of ecological effects of vegetation restoration[J]. Ecology&Environmental Sciences,2012,21(9):1640-1646.
    [13]王军,李红涛,郭义强,等.煤矿复垦生物多样性保护与恢复研究进展[J].地球科学进展,2016,31(2):126-136.WANG Jun,LI Hongtao,GUO Yiqiang,et al.Research progress and perspectives on biodiversity conservation and restoration of coal mine reclamation area[J]. Advances in Earth Science,2016,31(2):126-136.
    [14]于淼.采煤沉陷区生态演替规律及菌根修复作用与后效研究[D].北京:中国矿业大学(北京),2014.YU Miao.Rules of ecological succession and reclamation and lasting effects with mycorrhizal fungi in coal mining subsidence[D]. Beijing:China University of Mining&Technology(Beijing),2014.
    [15]刘萍.基于GIS的成都平原土壤真菌区系及空间变异研究[D].成都:四川农业大学,2004.LIU Ping.GIS-based spatial variability of soil mycoflora in Chengdu plain[D].Chengdu:Sichuan Agricultural University,2004.
    [16]王丽媛,郭东罡,白中科,等.露天煤矿生态复垦区刺槐+油松混交林下草本植物组成及空间分布格局[J].应用与环境生物学报,2012,18(3):399-404.WANG Liyuan,GUO Donggang,BAI Zhongke,et al.Species composition and spatial pattern of understory herbaceous plants on an ecological rehabilitation site from open coal mining[J]. Chinese Journal of Applied&Environmental Biology,2012,18(3):399-404.
    [17]刘晓红,李校,彭志杰,等.生物多样性计算方法的探讨[J].河北林果研究,2008,23(2):166-168LIU Xiaohong,LI Xiao,PENG Zhijie,et al. The discussion on calculation methods of biodiversity[J]. Hebei Journal of Forestry&Orchard Research,2008,23(2):166-168.
    [18] JAKOBSEN I,ABBOTT L K,ROBSON A D.External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifoliumsubterraneum L.spread of hyphae and phosphorus inflow into roots[J].New Phytologist,1992,120(3):371-380.
    [19]刘爱利,王培法,丁园圆.地统计学概论[M].北京:科学出版社,2012:96-110.
    [20]卢彦琦,常社霞,邢红霞,等.矿区植物与丛枝菌根真菌共生效应[J].北方园艺,2015(5):78-82.LU Yanqi,CHANG Shexia,XING Hongxia,et al.Symbiosis effect of arbuscular mycorrhizal fungi on plants in coal mine areas[J].Northern Horticulture,2015(5):78-82.
    [21]金樑,孙莉,王强,等.AM真菌在草原生态系统中的功能[J].生态学报,2016,36(3):873-882.JIN Liang,SUN Li,WANG Qiang,et al.Functions of arbuscular mycorrhizas in grassland ecosystems[J].Acta Ecologica Sinica,2016,36(3):873-882.
    [22]周利娟,黄继光,徐汉虹,等.菊科植物的杀菌活性及其活性成分[J].西北植物学报,2006,26(9):1959-1964.ZHOU Lijuan,HUANG Jiguang,XU Hanhong,et al.Anti-microbial activities and active ingredients of compositae plants[J]. Acta Botanica Boreali-Occidentalia Sinica,2006,26(9):1959-1964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700