用户名: 密码: 验证码:
三维花状Ni(OH)_2包裹TiO_2微米球用于光催化产氢(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:3D flower-like heterostructured TiO_2@Ni(OH)_2 microspheres for solar photocatalytic hydrogen production
  • 作者:张伟 ; 张洪文 ; 徐建中 ; 华强 ; 龙金林
  • 英文作者:Wei Zhang;Hongwen Zhang;Jianzhong Xu;Huaqiang Zhuang;Jinlin Long;College of Chemistry and Environmental Science, Hebei University;State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University;College of Chemical Engineering and Materials, Quanzhou Normal University;
  • 关键词:三维花状核壳微球 ; 二氧化钛 ; 氢氧化镍 ; 光催化产氢
  • 英文关键词:3D flower-like core-shell microspheres;;TiO_2;;Ni(OH)_2;;Photocatalytic hydrogen production
  • 中文刊名:催化学报
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:河北大学化学与环境科学学院;福州大学化学学院能源与环境光催化国家重点实验室;泉州师范学院化工与材料学院;
  • 出版日期:2019-03-05
  • 出版单位:催化学报
  • 年:2019
  • 期:03
  • 基金:supported by the National Natural Science Foundation of China(21773031);; the Natural Science Foundation of Fujian Province(2018J01686);; the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-2017A01 and SKLPEE-2017B02)~~
  • 语种:英文;
  • 页:93-98
  • 页数:6
  • CN:21-1601/O6
  • ISSN:0253-9837
  • 分类号:TQ116.2;O643.36;O644.1
摘要
TiO_2具有合适的能带位置以及成本低、无毒、稳定性高等优点,但由于大的激子结合能(130 meV)以及电子-空穴复合严重,其光催化性能和效率较低.目前,负载助催化剂是一种比较有效的提高TiO_2光催化效率的方法.助催化剂可通过抑制电子与空穴的复合、降低激子结合能、提高界面电子传输速率来提高光催化性能.寻求新型、廉价、高效产氢的助催化剂是当前光催化研究的热点.近年来, Ni(OH)_2由于具有多变的形貌以及一定的光催化性能而被人们关注.并且Ni(OH)_2本身就是p型光催化剂,可与主体材料复合形成p-n异质结材料,其中由异质结形成的内建电场可起到促进电子与空穴分离的作用.基于此,本文采用简单的合成方法制备出新颖的三维花状Ni(OH)_2包裹TiO_2纳米结构微球,通过X射线衍射仪(XRD)、扫描电镜(SEM)和透射电镜(TEM)等表征手段确定了目标产物被成功合成,并采用光催化产氢为探针反应研究了其光催化性能.结果表明, Ni(OH)_2包裹TiO_2纳米材料的产氢速率比纯TiO_2纳米材料提高了5倍.通过紫外-可见漫反射吸收光谱(DRS)与一系列对比实验发现, Ni(OH)_2拓宽了TiO_2的吸收光谱范围,催化活性的提高确实来源于引入的Ni(OH)_2.氮气吸脱附等温线和孔径分布分析表明, Ni(OH)_2壳的引入增大了催化剂的比表面积并且带来介孔,证实三维花状的纳米片界面为光催化产氢提供了更多的活性位点.电化学表征结果进一步证明,这种独特的p-n异质结促进了电子与空穴的分离和转移.基于元素分析和产氢活性结果,我们提出了可能的反应机理.
        TiO_2@Ni(OH)_2 core-shell microspheres were synthesized by a facile strategy to obtain a perfect 3D flower-like nanostructure with well-arranged Ni(OH)_2 nanoflakes on the surfaces of TiO_2 microspheres; this arrangement led to a six-fold enhancement in photocatalytic hydrogen evolution. The unique p-n type heterostructure not only promotes the separation and transfer of photogenerated charge carriers significantly, but also offers more active sites for photocatalytic hydrogen production. A photocatalytic mechanism is proposed based on the results of electrochemical measurements and X-ray photoelectron spectroscopy.
引文
[1]A. Tanaka, S. Sakaguchi,K.Hashimoto,H.Kominami,ACSCatal.,2012, 3, 79–85.
    [2]W. Wang, S. Liu, L. Nie, B. Cheng, J. Yu,Phys.Chem.Chem.Phys.,2013, 15, 12033–12039.
    [3]R. Yuan, T. Chen, E. Fei, J. Lin, Z. Ding, J. Long, Z. Zhang, X. Fu, P. Liu,L. Wu, X. Wang, ACS Catal., 2011, 1, 200–206.
    [4]F. Chen, W. Luo, Y. Mo, H. Yu, B. Cheng, Appl. Surf. Sci., 2018, 430,448–456.
    [5]H.M.El-Bery,Y.Matsushita,A.Abdel-moneim,Appl.Surf.Sci.,2017, 423, 185–196.
    [6]D. Xu, Y. Hai, X. Zhang, S. Zhang, R. He, Appl. Surf. Sci., 2017, 400,530–536.
    [7]K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal., 2017, 38, 1936–1955.
    [8]W.Kang,M.S.Hybertsen,Phys.Rev.B,2010,82,085203/1–085203/11.
    [9]L. Zhao, X. Chen, X. Wang, Y. Zhang, W. Wei, Y. Sun, M. Antonietti,M. M. Titirici, Adv. Mater., 2010, 22, 3317–3321.
    [10]S. Wei, S. Ni, X. Xu, Chin. J. Catal., 2018, 39, 510–516.
    [11]Y. Qiu, F. Ouyang, Appl. Surf. Sci., 2017, 403, 691–698.
    [12]L. Pan, J. Zhang, X. Jia, Y. H. Ma, X. Zhang, L. Wang, J. J. Zou, Chin. J.Catal., 2017, 38, 253–259.
    [13]S.Min,J.Hou,Y.Lei,X.Ma,G.Lu,Appl.Surf.Sci.,2017,396,1375–1382.
    [14]A. Meng, B. Zhu, B. Zhong, L. Zhang, B. Cheng, Appl. Surf. Sci., 2017,422, 518–527.
    [15]L.Ling,L.Liu,Y.Feng,J.Zhu,Z.Bian,Chin.J.Catal.,2018,39,639–645.
    [16]X. Chen, C. Long, C. Lin, T. Wei, J. Yan, L. Jiang, Z. Fan, Electrochim.Acta, 2014, 137, 352–358.
    [17]L. Fan, J. Long, Q. Gu, H. Huang, H. Lin, X. Wang, J. Catal., 2014, 320,147–159.
    [18]Q.Xiang,J.Yu,M.Jaroniec,J.Am.Chem.Soc.,2012,134,6575–6578.
    [19]L. Zhang, W. Feng, B. Wang, K. Wang, F. Gao, Y. Zhao, P. Liu, Appl.Catal. B, 2017, 212, 80–88.
    [20]D.Ni,H.Shen,H.Li,Y.Ma,T.Zhai,Appl.Surf.Sci.,2017,409,241–249.
    [21]A. Meng, S. Wu, B. Cheng, J. Yu, J. Xu, J. Mater. Chem. A, 2018, 6,4729–4736.
    [22]X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev., 2016, 45, 2603–2636.
    [23]T. Sreethawong, Y. Suzuki, S. Yoshikawa, Int. J. Hydrogen Energy,2005, 30, 1053–1062.
    [24]W.Zhang,Y.Wang,Z.Wang,Z.Zhong,R.Xu,Chem.Commun.,2010, 46, 7631–7633.
    [25]S. Ran, Y. Zhu, H. Huang, B. Liang, J. Xu, B. Liu, J. Zhang, Z. Xie, Z.Wang,J.Ye,D.Chen,G.Shen,CrystE ngC omm,2012,14,3063–3068.
    [26]S. Sarkar, M. Pradhan, A. K. Sinha, M. Basu, Y. Negishi, T. Pal, Inorg.Chem., 2010, 49, 8813–8827.
    [27]Z. Zhu, Y. Zhang, Y. Zhang, H. Liu, C. Zhu, Y. Wu, Ceram. Int., 2013,39, 2567–2573.
    [28]C. Li, S. Liu, J. Nanomater., 2012, 2012, 648012/1–648012/6.
    [29]J. Li, W. Zhao, F. Huang, A. Manivannan, N. Wu, Nanoscale, 2011, 3,5103–5109.
    [30]K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang, X. Zhang, Chin. J.Catal., 2017, 38, 240–252.
    [31]C. J. Chen, C. H. Liao, K. C. Hsu, Y. T. Wu, J. C. S. Jeffrey, Catal. Commun., 2011, 12, 1307–1310.
    [32]B. Liu, L. M. Liu, X. F. Lang, H. Y. Wang, X. W. Lou, E. S. Aydil, Energy Environ. Sci., 2014, 7, 2592–2597.
    [33]J. Liang, B. Dong, S. Ding, C. Li, B. Q. Li, J. Li, G. Yang, J. Mater. Chem.A, 2014, 2, 11299–11304.
    [34]J. Yu, Y. Hai, B. Cheng, J. Phys. Chem. C, 2011, 115, 4953–4958.
    [35]B.Klahr,S.Gimenez,F.Fabregat-Santiago,J.Bisquert,T.W.Hamann, Energy Environ. Sci., 2012, 5, 7626–7636.
    [36]J. Ran, J. Yu, M. Jaroniec, Green Chem., 2011, 13, 2708–2713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700