用户名: 密码: 验证码:
LED3A土柱淋洗Pb与Zn污染砂土的效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Column Leaching of Lead and Zinc in Sandy Soil by LED3A
  • 作者:乔洪涛 ; 赵保卫 ; 于雄胜
  • 英文作者:QIAO Hongtao;ZHAO Baowei;YU Xiongsheng;Department of Chemistry,Xinzhou Teachers University;School of Environmental and Municipal Engineering,Lanzhou Jiaotong University;
  • 关键词:N-十二酰基乙二胺三乙酸钠盐(LED3A) ; 土柱淋洗 ; 重金属形态 ; 土壤修复
  • 英文关键词:sodium N-lauroyl ethylenediamine triacetate;;column leaching;;metal speciation;;soil remediation
  • 中文刊名:环境科学研究
  • 英文刊名:Research of Environmental Sciences
  • 机构:忻州师范学院化学系;兰州交通大学环境与市政工程学院;
  • 出版日期:2018-05-25 15:52
  • 出版单位:环境科学研究
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(No.41261077);; 甘肃省自然科学基金项目(No.1010RJZA070)~~
  • 语种:中文;
  • 页:148-155
  • 页数:8
  • CN:11-1827/X
  • ISSN:1001-6929
  • 分类号:X53
摘要
为探究不同淋洗方式下螯合型表面活性剂LED3A(N-十二酰基乙二胺三乙酸钠盐)对重金属污染土壤的淋洗效果,采用室内土柱淋洗法研究了LED3A在不同流速条件下对Pb、Zn单一污染砂土的淋洗效果,并通过优化的BCR法分析了淋洗前、后土柱中不同深度处Pb、Zn的形态变化特征.结果表明:LED3A对Pb、Zn单一污染砂土的淋洗规律基本类似,淋出液中ρ(Pb)、ρ(Zn)随淋洗液累积孔隙体积数目的增加呈现急剧增大、达到峰值后逐渐降低的趋势; Pb、Zn的淋洗曲线中均存在不同程度的拖尾现象,且对称性较差;淋出液中ρ(Pb)、ρ(Zn)峰值和Pb、Zn最大累积去除率均随流速的增大而减小.随着淋洗深度和流速的增加,各形态Pb、Zn的去除率均呈现减小的趋势,LED3A对酸可提取态Pb、Zn的去除效果最为显著,去除率均大于50%;对氧化物结合态、有机结合态和残渣态Pb、Zn的去除率大小顺序与淋洗深度和流速有关;对比淋洗前、后土柱中重金属的形态分布可知,最易释放和被生物利用的酸可提取态的占比明显减少,不易或不能被生物利用的氧化物结合态、有机结合态和残渣态的占比明显增加.研究显示,LED3A低流速淋洗不仅能够去除一定量的土壤重金属,同时可有效降低残留重金属对环境的潜在风险.
        Column leaching of Pb and Zn in Pb and Zn-contaminated sandy soils by using sodium N-lauroyl ethylenediamine triacetate( LED3 A) under different leaching velocities was studied. The objective of this study was to provide reference for remediation of heavy metal contaminated soils by LED3 A leaching. The chemical forms of Pb and Zn at different depths in the soil columns were compared before and after the leaching treatment. The experimental results showed that the leaching behavior of Pb and Zn in the contaminated sandy soils was similar. The concentrations of Pb and Zn in the leachates increased,and reached the maximum,and then decreased with increasing cumulative pore volumes of the leaching solutions. There were different degrees of tailing phenomenon in the leaching curves of Pb and Zn by LED3 A. The symmetry of leaching curves was poor. Both the peak concentrations and the maximum cumulative removal rates of Pb and Zn in leachate decreased with increasing leaching velocity. The removal rates of Pb and Zn showed a decreasing trend with the increase in leaching depth and velocity. The removal efficiency of acid extractable form of Pb and Zn by LED3 A was highest as compare to the other forms,which was greater than 50%. The order of removal efficiencies of the other forms,such as oxide bound,organic bound and residual forms of Pb and Zn,were correlated with the leaching depth and velocity. Low-flow leaching can effectively reduce the environmental risks of Pb and Zn. The percentage distribution of Pb and Zn in the contaminated soil before and after the LED3 A washing illustrated that the mobile fractions( acid-extractable fraction) decreased and immobile fractions( oxide bound organic bound and residual fraction) increased. The research shows that the low velocity leaching of LED3 A can not only remove a certain amount of heavy metals in soils,but also effectively reduce the potential risks of the residual heavy metals to the environment.
引文
[1] ZHANG Guixiang,GUO Xiaofang,ZHAO Zhihua,et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil[J].Environmental Pollution,2016,218:513-522.
    [2] LI Zhiyuan,MA Zongwei,VAN DER KUIJP T J,et al.A review of soil heavy metal pollution from mines in China:pollution and health risk assessment[J]. Science of the Total Environment,2014,468/469:843-853.
    [3] QIU Rongliang,ZOU Zeli,ZHAO Zhihao,et al. Removal of trace and major metals by soil washing with Na2EDTA and oxalate[J].Journal of Soils and Sediments,2010,10:45-53.
    [4] ZHANG Runhua,LI Zhiguo,LIU Xudong,et al.Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar[J]. Ecological Engineering,2017,98:183-188.
    [5] JELUSIC M,LESTAN D.Effect of EDTA washing of metal polluted garden soils. Part I:toxicity hazards and impact on soil properties[J].Science of the Total Environment,2014,475:132-141.
    [6]李丹丹,郝秀珍,周东美.柠檬酸土柱淋洗法去除污染土壤中Cr的研究[J].农业环境科学学报,2013,32(10):1999-2004.LI Dandan,HAO Xiuzhen,ZHOU Dongmei. Column leaching of chromium from a contaminated soil using citric acid[J]. Journal of Agro-Environment Science,2013,32(10):1999-2004.
    [7]刘培亚,李玉娇,胡鹏杰,等.复合淋洗试剂土柱淋洗法修复Cd、Pb污染土壤[J].环境工程,2015,33(1):163-167.LIU Peiya,LI Yujiao,HU Pengjie,et al. Column leaching of cadmium and lead from a contaminated soil using composite leaching agent[J]. Environmental Engineering,2015,33(1):163-167.
    [8] QIN Peng,WANG Hailong,YANG Xing,et al. Bamboo-and pigderived biochars reduce leaching losses of dibutyl phthalate,cadmium,and lead from co-contaminated soils[J]. Chemosphere,2018,198:450-459.
    [9]王霞.螯合剂与表面活性剂对污染塿土中Cu、Pb的淋洗修复研究[D].杨凌:西北农林科技大学,2012:30-37.
    [10] HASEGAWA H,RAHMAN I M M,NAKANO M,et al.Recovery of toxic metal ions from washing effluent containing excess aminopolycarboxylate chelant in solution[J]. Water Research,2011,45(16):4844-4854.
    [11]曹振宇.重金属污染土壤的淋洗修复研究[D].北京:北京化工大学,2014:21-29.
    [12] UDOVIC M,LESTAN D.EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals:remediation efficiency and soil impact[J]. Chemosphere,2012,88(6):718-724.
    [13] QIAO Jiangbo,SUN Huimin,LUO Xiuhua,et al. EDTA-assisted leaching of Pb and Cd from contaminated soil[J]. Chemosphere,2017,167:422-428.
    [14] LILIANE J,FRANCOIS B,BOLLINGER J. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid[J].Environmental Pollution,2012,164(1):175-181.
    [15]孙涛,陆扣萍,王海龙.不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J].浙江农林大学学报,2015,32(1):140-149.SUN Tao,LU Kouping,WANG Hailong. Advance in washing technology for remediation of heavy metal contaminated soils:effects of eluants and washing conditions[J]. Journal of Zhejiang A&F University,2015,32(1):140-149.
    [16] LIU Lianwen,LI Wei,SONG Weiping,et al. Remediation techniques for heavy metal-contaminated soils:principles and applicability[J].Science of the Total Environment,2018,633:206-219.
    [17] DERMONT G,BERGERON M,MERCIER G,et al.Soil washing for metal removal:a review of physical/chemical technologies and field applications[J].Journal of Hazardous Materials,2008,152:1-31.
    [18] KUO S,LAI M S,LIN C W.Influence of solution acidity and CaCl2concentration on the removal of heavy metals from metalcontaminated rice soils[J]. Environmental Pollution,2006,144:918-925.
    [19] ZHANG Weihua,TSANG D C,LO I M.Removal of Pb by EDTAwashing in the presence of hydrophobic organic contaminants or anionic surfactant[J]. Journal of Hazardous Materials,2008,155:433-439.
    [20] WANG Xixin,ZHAO Jianling,YAO Xingzhi,et al. Synthesis and properties of N-hexadecyl ethylenediamine triacetic acid[J].Journal of Colloid and Interface Science,2004,279(2):548-551.
    [21] ZHAO Baowei,HUANG Liping,DIAO Jingru,et al.Remediation of copper(Ⅱ)-cadmium(Ⅱ)contaminated loess soil using a novel chelating surfactant[J].Fresenius Environmental Bulletin,2015,24(10b):3473-3478.
    [22]乔洪涛,赵保卫,刁静茹,等.螯合型表面活性剂对Pb-Zn复合污染土壤的洗脱效果[J].环境科学研究,2016,29(1):179-186.QIAO Hongtao,ZHAO Baowei,DIAO Jingru,et al. Washing lead and zinc from co-contaminated soils by chelating surfactant[J].Research of Environmental Sciences,2016,29(1):179-186.
    [23] SUNGUR A,SOYLAK M,OZCAN H.Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure:relationship between soil properties and heavy metals availability[J]. Chemical Speciation and Bioavailability,2014,26(4):219-230.
    [24] JAI Wen,YI Yuanjie,ZENG Guangming.Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J]. Journal of Environmental Management,2016,178:63-69.
    [25]范杰.离子强度、氧化还原电位对土壤中胶体与Cd/Zn共迁移的影响及数值模拟[D].青岛:青岛大学,2012:66-67.
    [26]卢信,赵炳梓,张佳宝,等.不同可溶性有机碳对铜在土壤中迁移的影响[J].土壤学报,2007,44(3):410-424.LU Xin,ZHAO Bingzi,ZHANG Jiabao,et al.Mobility of Cu in soils in relation to dissolved organic carbon[J].Acta Pedologica Sinica,2007,44(3):410-424.
    [27] HOU Lijuan,QIAN Tianwei,HAO Junting,et al. Sorption and retardation of strontium in saturated Chinese loess:experimental results and model analysis[J]. Journal of Environmental Radioactivity,2013,116:19-27.
    [28]孔祥斌,谢云峰,柳晓娟,等.饱和砂质土壤中不同流速条件下1,2-二氯乙烷的运移及模拟[J].环境科学学报,2013,33(10):2821-2827.KONG Xiangbin,XIE Yunfeng,LIU Xiaojuan,et al. Simulation of the transport of 1,2-dichloroethane in saturated sandy soil under different flow rates[J]. Acta Scientiae Circumstantiae,2013,33(10):2821-2827.
    [29] PPUGA A P,ABREU C A,MELO L C A,et al.Biochar application to a contaminated soil reduces the availability and plant uptake of zinc,lead and cadmium[J].Journal of Environmental Management,2015,159:86-93.
    [30]严明书,李武斌,杨乐超,等.重庆渝北地区土壤重金属形态特征及其有效性评价[J].环境科学研究,2014,27(1):64-70.YAN Mingshu,LI Wubin,YANG Lechao,et al. Speciation characteristics and effectiveness assessment of heavy metals in soils in Yubei District,Chongqing[J]. Research of Environmental Sciences,2014,27(1):64-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700