用户名: 密码: 验证码:
蓝莓Vco-miR_n10的克隆及对干旱的响应分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cloning of Blueberry Vco-miR_n10 and Analysis of Its Response to Drought
  • 作者:单炳辉 ; 谢鑫 ; 李季 ; 柴普今 ; 李鹤鹏 ; 张琳贺 ; 翟璐璐
  • 英文作者:SHAN Binghui;XIE Xin;LI Ji;CHAI Pujin;LI Hepeng;ZHANG Linhe;ZHAI Lulu;College of Plant Science, Jilin University;
  • 关键词:蓝莓 ; 拟南芥 ; miRNA ; Vco-miR_n10 ; 甘露醇
  • 英文关键词:blueberry;;Arabidopsis thaliana;;miRNA;;Vco-miR_n10;;mannitol
  • 中文刊名:广东农业科学
  • 英文刊名:Guangdong Agricultural Sciences
  • 机构:吉林大学植物科学学院;
  • 出版日期:2019-04-25 10:35
  • 出版单位:广东农业科学
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金(31701895)
  • 语种:中文;
  • 页:40-47
  • 页数:8
  • CN:44-1267/S
  • ISSN:1004-874X
  • 分类号:S663.9
摘要
【目的】MicroRNA(miRNA)是一类内源单链非编码的小分子RNA,在动植物中参与转录后基因表达调控。Vco-miR_n10是蓝莓中的新型miRNA,目前尚未见该miRNA功能方面的报道。本研究对蓝莓VcomiR_n10进行了初步功能分析。【方法】基于前期蓝莓小RNA高通量测序结果,对鉴定到的蓝莓新型miRNA(Vco-miR_n10)的前体序列(224 nt)进行克隆与测序,并利用mfold在线软件对其前体序列的二级结构进行预测。采用Gateway系统构建了35Spro:: pre-Vco-mi R_n10表达载体并转入野生型拟南芥中,对其正常生长及300mmol/L甘露醇处理条件下的表型进行观察与分析。【结果】克隆获得了Vco-mi R_n10的前体序列,该序列能够折叠形成较完美的茎环结构且仅有2个错配碱基对。Vco-miR_n10的成熟体序列位于3'茎臂上。观察正常生长条件下的转基因植株并无显著的表型变化。而在300 mmol/L甘露醇模拟的干旱条件下,Vco-miR_n10-24与VcomiR_n10-52的发芽率(33.53%、37.69%)和绿苗率均显著低于野生型(发芽率67.72%、绿苗率66.33%)。【结论】蓝莓Vco-miR_n10能够响应甘露醇模拟的干旱胁迫,并降低拟南芥对干旱的耐受能力,影响发芽率和绿苗率,说明蓝莓Vco-miR_n10可能在植物响应干旱胁迫过程中发挥一定的调控功能。
        【Objective】MicroRNAs(miRNAs) are a class of endogenous, single-stranded and non-coding small RNA molecules that are involved in the regulation of gene expression after transcription in plants and animals. Vco-miR_n10 is a novel miRNA in blueberry, and its function remains unknown. In the present study, a preliminary functional analysis of blueberry Vco-miR_n10 was carried out.【Method】Based on the previous data from high throughput sequencing of small RNA in blueberry, the precursor sequence(224 nt) of the novel miRNA(Vco-miR_n10) was cloned and sequenced.The secondary structure of its precursor sequence was predicted by mfold web server. The expression vector, 35 Spro::preVco-miR_n10, was constructed by Gateway system and transferred into wild type Arabidopsis thaliana and its phenotype under the conditions of normal growth and 300 mmol/L mannitol treatment was observed and analyzed, respectively.【Result】The precursor sequence of Vco-miR_n10 was obtained by cloning, and structure analysis indicated that the precursor shows near-perfect stem-loop structure with no more than 2 mismatches. In addition, the mature sequence was located on the 3'stem arm. No significant phenotypic variation was observed in transgenic plants under the normal growth condition. However, under the drought condition simulated by 300 mmol/L mannitol, the germination rate(33.53%, 37.69%) and cotyledon greening rate(33.53%, 37.69%) of two transgenic lines(Vco-miR_n10-24 and Vco-miR_n10-52) were significantly lower than those of wild type A. thalian(germination rate: 67.72%; cotyledon greening rate:66.33%).【Conclusion】These results indicated that blueberry Vco-miR_n10 could respond to the mannitol-simulated drought stress, and reduce the drought tolerance in A. thalian through affecting seed germination and cotyledon greening, which showed that blueberry Vco-miR_n10 might play a regulatory role in plant response to drought stress.
引文
[1]AKDOGAN G,TUFEK E D,URANBEY S,UNVER T.miRNA-based drought regulation in wheat[J].Functional&Integrative Genomics,2016,16(3):221-233.doi:10.1007/s10142-015-0452-1.
    [2]LEE R C,FEINBAUM R L,AMBROS V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.doi:10.1016/0092-8674(93)90529-Y.
    [3]REINHART B J,WEINSTEIN E G,RHOADES M W,BARTEL B,BARTEL D P.MicroRNAs in plants[J].Genes Dev,2002,16(13):1616-1626.doi:10.1101/gad.1004402.
    [4]YU N,NIU Q W,NG K H,CHUA N H.The role of miR156/SPLs modules in Arabidopsis lateral root development[J].The Plant Journal,2015,83(4):673-685.doi:10.1111/tpj.12919.
    [5]GAO R M,WANG Y,GRUBER M Y,HANNOUFA A.miR156/SPL10modulates lateral root development,branching and leaf morphology in Arabidopsis by Silencing AGAMOUS-LIKE 79[J].Frontiers in Plant Science,2018,8:2226.doi:10.3389/fpls.2017.02226.
    [6]LU Y Z,FENG Z,LIU X Y,BIAN L Y,XIE H,ZHANG C L,MYSOREK S,LIANG J S.MiR393 and miR390 synergistically regulate lateral root growth in rice under different conditions[J].BMC Plant Biology,2018,18:261.doi:10.1186/s12870-018-1488-x.
    [7]CAO D Y,WANG J,JU Z,LIU Q Q,LI S,TIAN H Q,FU D Q,ZHUH L,LUO Y B,ZHU B Z.Regulations on growth and development in tomato cotyledon,flower and fruit via destruction of miR396 with short tandem target mimic[J].Plant Science,2016,247:1-12.doi:10.1016/j.plantsci.2016.02.012.
    [8]赵晓晖,孔凡江,刘宝辉.植物miR172及其靶基因调控开花与发育的研究进展[J].黑龙江农业科学,2017(2):126-130.doi:10.11942/j.issn1002-2767.2017.02.0126.ZHAO X H,KONG F J,LIU B H.Research progress of miR172and its targets in the regulation of flowering and development[J].Heilongjiang Agricultural Sciences,2017(2):126-130.doi:10.11942/j.issn1002-2767.2017.02.0126.
    [9]SHIVARAJ S M,JAIN A,SINGH A.Highly preserved roles of Brassica MIR172,in polyploid Brassicas:ectopic expression of variants of Brassica MIR172,accelerates floral transition[J].Molecular Genetics and Genomics,2018,293(5):1121-1138.doi:10.1007/s00438-018-1444-3.
    [10]BAI B,BIAN H W,ZENG Z H,HOU N,SHI B,WANG J H,ZHU M Y,HAN N.miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley[J].Plant and Cell Physiology,2017,58(3):426-439.doi:10.1093/pcp/pcw211.
    [11]FAN K,FAN D M,DING Z T,SU Y H,WANG X C.Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant(Camellia sinensis L.)[J].Plant Physiology and Biochemistry,2015,97:350-360.doi:10.1016/j.plaphy.2015.10.026.
    [12]YU C,CHEN Y T,CAO Y Q,CHEM H M,WANG J C,BI Y M,TIANF,YANG F H,ROTHSTEIN S J,ZHOU X P,HE C Y.Overexpression of miR169o,an overlapping microRNA in response to both nitrogen limitation and bacterial infection,promotes nitrogen use efficiency and susceptibility to bacterial blight in rice[J].Plant and Cell Physiology,2018,59(6):1234-1247.doi:10.1093/pcp/pcy060.
    [13]HAJYZADEH M,TURKTAS M,KHAWAR K M,UNVER T.miR408overexpression causes increased drought tolerance in chickpea[J].Gene,2015,555(2):186-193.doi:10.1016/j.gene.2014.11.002.
    [14]WU B F,LI W F,XU H Y,QI L W,HAN S Y.Role of cin-miR2118in drought stress responses in Caragana intermedia and Tobacco[J].Gene,2015,574(1):34-40.doi:10.1016/j.gene.2015.07.072.
    [15]LI W B,WANG T,ZHAN Y H,LI Y G.Overexpression of soybean miR172c confers water deficit and salt tolerance but ABA sensitivity in transgenic Arabidopsis thaliana[J].Journal of Experimental Botany,2015,67(1):175-194.doi:10.1093/jxb/erv450.
    [16]ESMAEILI F,SHIRAN B,FALLAHI H,MIRAKHORLI N,BUDAKH,MATINEZ-GOMEZ P.In silico search and biological validation of microRNAs related to drought response in peach and almond[J].Functional&Integrative Genomics,2016,17(2-3):1-13.doi:10.1007/s10142-016-0488-x.
    [17]吴美婷,杨晓玉,罗淋淋,莫蓓莘,刘琳.植物microRNA响应非生物胁迫研究进展[J].广东农业科学,2018,45(3):69-80.doi:10.16768/j.issn.1004-874X.2018.03.012.WU M T,YANG X Y,LUO L L,MO B S,LIU L.Research progress of microRNA response to abiotic stress[J].Guangdong Agricultural Sciences,2018,45(3):69-80.doi:10.16768/j.issn.1004-874X.2018.03.012.
    [18]郝雨帆,王俊杰,杨丹丹,张静,闫鑫甜,梁卫红.miRNA对水稻非生物胁迫的应答[J].广东农业科学,2014,41(19):5-9.doi:10.3969/j.issn.1004-874X.2014.19.002.HAO Y F,WANG J J,YANG D D,ZHANG J,YAN X T,LIANG WH.Response of miRNA to abiotic stress in Rice(Oryza sativa L.)[J].Guangdong Agricultural Sciences,2014,41(19):5-9.doi:10.3969/j.issn.1004-874X.2014.19.002.
    [19]SUNKAR R,ZHU J K.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J].The Plant Cell Online,2004,16(8):2001-2019.doi:10.1105/tpc.104.022830.
    [20]谷彩红,陈家红,张荃.miRNA参与植物耐逆性调控的研究进展[J].安徽农业科学,2017,45(34):148-151.doi:10.13989/j.cnki.0517-6611.2017.34.047.GU C H,CHEN J H,ZHANG Q.Research progress of miRNAinvolved in the regulation of plant stress tolerance[J].Journal of Anhui Agricultural Sciences,2017,45(34):148-151.doi:10.13989/j.cnki.0517-6611.2017.34.047.
    [21]ZHANG B H.MicroRNA:a new target for improving plant tolerance to abiotic stress[J].Journal of Experimental Botany,2015,66(7):1749-1761.doi:10.1093/jxb/erv013.
    [22]GHORECHA V,ZHENG Y,LIU L,SUNKAR R,KRISHNAYYA N S R.MicroRNA dynamics in a wild and cultivated species of Convolvulaceae exposed to drought stress[J].Physiology&Molecular Biology of Plants,2017,23(2):291-300.doi:10.1007/s12298-017-0426-y.
    [23]肖敏敏,陈信波.microRNA响应植物非生物胁迫的研究进展[J].分子植物育种,2018,16(10):68-73.doi:10.13271/j.mpb.016.003154.XIAO M M,CHEN X B.Advances in microRNA response to abiotic stress in plants[J].Molecular Plant Breeding,2018,16(10):68-73.doi:10.13271/j.mpb.016.003154.
    [24]LI W X,OONO Y,ZHU J H,HE X J,WU J M,LIDA K,LU X Y,CUIX P,JIN H L,ZHU J K.The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J].The Plant Cell Online,2008,20(8):2238-2251.doi:10.1105/tpc.108.059444.
    [25]HWANG E W,SHIN S J,YU B K,BYUN M O,KWON H B.miR171family members are involved in drought response in Solanum tuberosum[J].Journal of Plant Biology,2011,54(1):43-48.doi:10.1007/s12374-010-9141-8.
    [26]FERDOUS J,HUSSAIN S S,SHI B J.Role of microRNAs in plant drought tolerance[J].Plant Biotechnology Journal,2015,13(3):293-305.doi:10.1111/pbi.12318.
    [27]罗书芳,崔浪军,王健,屈生宪.干旱胁迫下15种丹参miRNAs差异表达分析[J].广东农业科学,2013,40(5):134-137.doi:10.3969/j.issn.1004-874X.2013.05.040.LUO S F,CUI L J,WANG J,QU S X.Differential expression of miRNAs in 15 species of Salvia miltiorrhiza Bunge under drought stress[J].Guangdong Agricultural Sciences,2013,40(5):134-137.doi:10.3969/j.issn.1004-874X.2013.05.040.
    [28]LIU H P,SEARLE I R,WATSON-HAIGH N S,BAUMANN U,MATHER D R,ABLE A J,ABLE J A.Genome-wide identification of microRNAs in leaves and the developing head of four durum genotypes during water deficit stress[J].PLOS ONE,2015,10(11):e0142799.doi:10.1371/journal.pone.0142799.
    [29]HOU Y M,ZHAI L L,LI X Y,XUE Y,WANG J J,YANG P J,CAO C M,LI H X,CUI Y H,BIAN S M.Comparative analysis of fruit ripeningrelated miRNAs and their targets in blueberry using small RNAand degradome sequencing[J].International Journal of Molecular Sciences,2017,18(12):2767.doi:10.3390/ijms18122767.
    [30]KURIHARA Y,WATANABE Y.Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(34):12753-12758.doi:10.1073/pnas.0403115101.
    [31]KURIHARA Y,TAKASHI Y,WATANABE Y.The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis[J].RNA,2006,12(2):206-212.doi:10.1261/rna.2146906.
    [32]VOINNET O.Origin,biogenesis,and activity of plant microRNAs[J].Cell,2009,136(4):669-687.doi:10.1016/j.cell.2009.01.046.
    [33]TRINDADE I,CAPITAO C,DALMAY T,FEVEREIRO M P,DOSSANTOS D M.miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula[J].Planta,2010,231(3):705-716.doi:10.2307/23391542.
    [34]ZHOU M,LI D Y,LI Z G,HU Q,YANG C H,ZHU L H,LUO H.Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J].Plant Physiology,2013,161(3):1375-1391.doi:10.1104/pp.112.208702.
    [35]NI Z Y,HU Z,JIANG Q Y,ZHANG H.Overexpression of gmaMIR394a confers tolerance to drought in transgenic Arabidopsis thaliana[J].Biochemical and Biophysical Research Communications,2012,427(2):330-335.doi:10.1016/j.bbrc.2012.09.055.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700