用户名: 密码: 验证码:
秸秆炭化热解气旋风分离器-指杆轮两级净化装置研制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development on cyclone-finger roller two-stage purification device of pyrolysis gas from straw carbonization
  • 作者:辛明金 ; 迟博文 ; 陈天佑 ; 孟军 ; 焦晋康 ; 颚洋 ; 邬立岩 ; 宋玉秋
  • 英文作者:Xin Mingjin;Chi Bowen;Chen Tianyou;Meng Jun;Jiao Jinkang;E Yang;Wu Liyan;Song Yuqiu;College of Engineering, Shenyang Agricultural University;College of Biological and Agricultural Engineering, Jilin University;Biochar Engineering & Technology Research Center, Shenyang Agricultural University;
  • 关键词:秸秆 ; 炭化 ; 净化 ; 热解气 ; 两级净化 ; 旋风分离器 ; 指杆轮 ; 压力损失
  • 英文关键词:straw;;carbonization;;purification;;pyrolysis gas;;two-stage purification;;cyclone;;finger roller;;pressure loss
  • 中文刊名:农业工程学报
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:沈阳农业大学工程学院;吉林大学生物与农业工程学院;沈阳农业大学生物炭工程技术研究中心;
  • 出版日期:2019-02-23
  • 出版单位:农业工程学报
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划(2017YFD0200800);; 现代农业产业技术体系建设专项资金资助(CARS-01-46);; 沈阳市科技计划项目(17-182-9-00);; 云南省重点研发计划(2016IB004)
  • 语种:中文;
  • 页:226-232
  • 页数:7
  • CN:11-2047/S
  • ISSN:1002-6819
  • 分类号:X712;X701
摘要
为提高秸秆热解气的净化率,防止装置堵塞,该研究设计了旋风分离器与回转指杆轮相结合的两级净化装置,I级旋风分离器主要分离热解气中大粒径杂质,II级指杆轮使小粒径灰尘、焦油等杂质与锥形指杆碰撞、聚集、并在高速回转作用下离心分离,实现热解气高效净化。研究确定了I级净化装置的结构参数,设计了II级净化装置,确定了指杆轮与锥形指杆的参数及排列方式。以指杆轮转速、热解气的进口速度和芯筒入筒体深度为影响因素,以热解气的净化率和压力损失为指标,进行了二次通用旋转组合样机性能试验。利用Design-Expert8.0.6软件对试验数据进行方差和响应面分析,建立了影响因素与指标之间的数学模型,采用多指标优化法确定最优组合并进行了试验验证。试验得到最优组合参数:指杆轮转速为3 030 r/min,进口速度为19.5 m/s,芯筒入筒体深度为210 mm,此时的压力损失为1 971.73 Pa,热解气总净化率为84.2%,达到了净化要求。研究结果可为秸秆热解气净化装置研究提供理论依据。
        Carbonization is one of the effective measures for utilization of straw. However, the tar and dust produced by carbonization are mixed in the pyrolysis gas, which will hinder the extraction and subsequent utilization of the flammable gases in the gas, and the tar may stick onto the inner wall of the device if the gas was not purified. And the air may be seriously polluted if it is vented into the air without purification. A two-stage purification device which consisted of a cyclone and a finger roller in its exhaust tunnel was designed in this study to improve the purification rate of carbonized flue gas, the structural parameters of the device were determined and the finger rod was designed. To get an efficient purification of the gas, the cyclone is the first stage which separates large particles in the gas by centrifugal force, and finger roller is the second stage which collides and gathers small particles into large particles and separates the particles along the taper finger by centrifugal force. The quadratic regression experiment with general rotary design method was carried out, with factors of the finger roller speed, the flue gas inlet speed and the core tube insert distance and with indicators of the flue gas purification rate and the pressure loss, the variance analysis and surface response analysis of the data were conducted with software Design-Expert8.0.6, and the mathematic models between the indicators and factors were established. The results showed that the three factors had significant effect on the purification rate and pressure loss of flue gas(P<0.01); The impact order of factors on pressure loss was as follows: finger roller speed > inlet gas speed >core tube insert distance, and the order of factors on purification rate was as follows: finger roller speed >inlet gas speed >core tube insert distance. As for effect of interaction of factors, the interactions of finger roller speed and inlet gas speed, inlet gas speed and core tube insert distance had significant effect on the pressure loss(P<0.01); the interaction of finger roller speed and inlet gas speed was extremely significant on purification rate(P<0.01). The optimal combinations of factors and levels were determined with optimization of multiple indices and verified through experiment. The optimal parameters were finger roller speed of 3 030 r/min, inlet gas speed of 19.5 m/s, insert tube distance of 210 mm, under the conditions, the pyrolysis gas pressure loss was 1 971.73 Pa, the purification rate was 84.2%. It can meet the requirements of pyrolysis gas purification of straw carbonization. This study may provide a reference for the development of pyrolysis gas purification device.
引文
[1]陈温福,张伟明,孟军,等.生物炭应用技术研究[J].中国工程科学,2011,13(2):83-89.Chen Wenfu,Zhang Weiming,Meng Jun,et al.Researches on biochar application technology[J].Engineering Sciences2011,13(2):83-89.(in Chinese with English abstract)
    [2]陈天佑,孟军,辛明金,等.玉米秸秆生物炭压制成型特性研究[J].沈阳农业大学学报,2016,47(6):728-733.Chen Tianyou,Meng Jun,Xin Mingjin,et al.Compaction behavior of biocharfrom corn stalk[J].Journal of Shenyang Agricultural University,2016,47(6):728-733.(in Chinese with English abstract)
    [3]辛明金,陈天佑,孟军,等.秸秆炭化烟气除尘技术研究进展[J].吉林农业大学学报,2018,40(6):659-664.Xin Mingjin,Chen Tianyou,Meng Jun,et al.Review of dust removal from flue gas in straw carbonization[J].Journal of Jinlin Agricultural University,2018,40(6):659-664.(in Chinese with English abstract)
    [4]苏继峰,朱彬,周韬,等.秸秆焚烧导致南京及周边地区2次空气污染事件的成因比较[J].生态与农村环境学报,2012,28(1):37-41.Su Jifeng,Zhu Bin,Zhou Tao,et al.Contrast analysis of two serious air pollution events affecting Nanjing and its surrounding regions resulting from burning of crop residues[J].Journal of Ecology and Rural Environment,2012,28(1):37-41.(in Chinese with English abstract)
    [5]Zhang M S,SongY,Cai X H.A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004[J].Science of the Total Environment,2007,376(1/2/3):100-108.
    [6]Gilbert P,Ryu C,Sharifi V,et al.Tar reduction in pyrolysisvapours from biomass over a hot char bed[J].Bioresource Technology,2009,100(23):6045-6051.
    [7]杨玉琼,梁杰,宣俊.生物质焦油处理方法的国内研究现状及发展[J].化工进展,2011,30(增刊):411-413.Yang Yuqiong,Liang Jie,Xuan Jun.Domestic research present situation and development of biomass tar removal method[J].Chemical Industry Engineering Progress,2011,30(Supp.):411-413.(in Chinese with English abstract)
    [8]吴悠,赵立欣,孟海波,等.生物质热解焦油脱除方法研究进展[J].化工环保,2016,36(1):17-21.Wu You,Zhao Lixin,Meng Haibo,et al.Research progresses on removal of tar in biomass pyrolysis[J].Environmental Protection of Chemical Industry,2016,36(1):17-21.(in Chinese with English abstract)
    [9]吴文广,罗永浩,陈祎,等.生物质焦油净化方法研究进展[J].工业加热,2008,37(2):1-5.Wu Wenguang,Luo Yonghao,Chen Yi,et al.The progress in tar reduction method research[J].Industrial Heating,2008,37(2):1-5.(in Chinese with English abstract)
    [10]李贤斌,姚宗路,赵立欣,等.生物质炭化生成焦油催化裂解的研究进展[J].现代化工,2017,37(2):56-50.Li Xianbin,Yao Zonglu,Zhao Lixin,et al.Research progress of catalytic pyrolysis of biomass tar[J].Modern Chemical Industry,2017,37(2):56-50.(in Chinese with English abstract)
    [11]李乐豪,闻光东,杨启炜,等.生物质焦油处理方法研究进展[J].化工进展,2017,36(7):2407-2416.Li Lehao,Wen Guangdong,Yang Qiwei,et al.Advance in the treatment methods of biomass tar[J].Chemical Industry Engineering progress,2017,36(7):2407-2416.(in Chinese with English abstract)
    [12]汤浩,孙鹏,刘文峰.工作条件对轴流旋风分离器分离效率影响的数值研究[J].机械工程学报,2017,53(2):157-163.Tang Hao,Sun Peng,Liu Wenfeng.Numerical study on the influence of working conditions on separation efficiency of an axial flow cyclone separator[J].Journal of Mechanical Engineering,2017,53(2):157-163.(in Chinese with English abstract)
    [13]鲍振博,靳登超,刘玉乐,等.生物质气化中焦油的产生及其危害性[J].安徽农业科学,2011,39(4):2243-2244.Bao Zhenbo,Jin Ddengchao,Liu Yule,et al.Tar generation and its harmfulness in the process of biomass gasification[J].Journal of Anhui Agricultural Sciences,2011,39(4):2243-2244.(in Chinese with English abstract)
    [14]Wu B,Liu S,Wang H.A study on advanced concept for fine particle separation[J].Experimental Thermal and Fluid Science,2002,26:723-730.
    [15]Xiong Zhiyi,Ji Zhongli,Wu Xiaolin.Development of a cyclone separator with high efficiency and low pressure drop in axial inlet cyclones[J].Powder Technology,2014,253:644-649.
    [16]Zhu Y,Kim M C,Lee K W,et al.Design and performance evaluation of a novel double cyclone[J].Aerosol Science and Technology,2001,34(2):373-380.
    [17]Karagoz I,Avci A,Surmen A,et al.Design and performance evaluation of a new cyclone separator[J].Journal of Aerosol Science,2013,59:57-64.
    [18]Hoffmann A C,Jonge R D,Arends H,et al.Evidence of the‘natural vortex length’and its effect on the separation efficiency of gas cyclones[J].Filtration&Separation,1995,32(8):799-804.
    [19]Obermairs,Woisetschlager J,Staudinger G.Investigation of the flow pattern in different dust outlet geometries of a gas cyclone by laser Doppler anemometry[J].Powder Technology,2003,138(2):239-251.
    [20]陈建义,罗晓兰,时铭显.PV-E型旋风分离器性能试验研究[J].流体机械,2004,32(3):39-43.Chen Jianyi,Luo Xiaolan,Shi Mingxian.Experiment research on performance of model PV-E cyclone separator[J].Fluid Machinery,2004,32(3):39-43.(in Chinese with English abstract)
    [21]赵兵涛,沈恒根,张吉光.旋风分离器进口结构的优化及其性能的试验研究[J].化工机械,2003,30(4):195-205.Zhao Bingtao,Shen Henggen,Zhang Jiguang.An experimental investigation on the optimum and performance of the inlet structure of a cyclone[J].Chemical Engineering&Machinery,2003,30(4):195-205.(in Chinese with English abstract)
    [22]张建平,徐达成,车鹏,等.锥度对旋风除尘器主要性能的影响[J].环境工程学报,2016,10(5):2507-2512.Zhang Jianping,Xu Dacheng,Che Peng,et al.Influences of taper on main performances of cyclone separator[J].Chinese Journal of Environmental Engineering,2016,10(5):2507-2512.(in Chinese with English abstract)
    [23]Xiang R,Park S H,Lee K W.Effects of cone dimension on cyclone performance[J].Journal of Aerosol Science,2001,32(4):549-561.
    [24]张建平,车鹏,徐达成.相对端面比对旋风除尘器主要性能的影响[J].工业安全与环保,2016,42(9):22-24.Zhang Jianping,Che Peng,Xu Dacheng.The influences of relative end face ratio on main performances for the cyclone separator[J].Industrial Safety and Environmental Protection,2016,42(9):22-24.(in Chinese with English abstract)
    [25]郑建祥,周天鹤.旋风分离器排气管缩口半径优化的数值模拟[J].流体机械,2015,43(12):28-32.Zhang Jianxiang,Zhou Tianhe.Numerical simulation to the reducing radius optimization of cyclone separator exhaust pipe[J].Fluid Machinery,2015,43(12):28-32.(in Chinese with English abstract)
    [26]Gao X,Chen J,Feng J,et al.Numerical investigation of the effects of the central channel on the flow field in an oil-gas cyclone separator[J].Computers&Fluids,2014,92:45-55.
    [27]王乐勤,郝宗睿,王循明,等.筒体长度对旋风分离器内流场影响的数值模拟[J].工程热物理学报,2009,30(2):223-226.Wang Leqin,Hao Zongrui,Wang Xunming,et al.Numerical simulation of flow field in cyclone of different height[J].Journal of Engineering Thermophysics,2009,30(2):223-226.(in Chinese with English abstract)
    [28]杨景轩,马强,孙国刚.旋风分离器排气管最佳插入深度的实验与分析[J].环境工程学报,2013,7(7):2673-2677.Yang Jingxuan,Ma Qiang,Sun Guogang.Experiment and analysis of vortex finder optimum lengthin cyclone separator[J].Chinese Journal of Environmental Engineering,2013,7(7):2673-2677.(in Chinese with English abstract)
    [29]Hasler P,Nussbaumer T.Gas cleaning for IC engine applications from fixed bed biomass gasication[J].Biomass and Bioenergy,1999,16(6):385-395.
    [30]De Jong W,Unal O,Andries J,et al.Biomass and fossil fuel conversion by pressurized fluidised bed gasification using hot gasceramic filters as gas cleaning[J].Biomass and Bioenergy,2003,25(1):59-83.
    [31]Pathak B S,Kapatel D V,Bhoi P R,et al.Design and development of sand bed filter for upgrading producer gas to IC engine quality fuel[J].International Energy Journal,2007,8(1):15-20.1
    [32]刘玉环,朱普琪,王允圃,等.生物质气化焦油处理技术的最新研究进展[J].现代化工,2013,33(11):24-29.Liu Yuhuan,Zhu Puqi,Wang Yunpu,et al.Advance in tar removal technology of biomass gasification[J].Modern Chemical Industry,2013,33(11):24-29.(in Chinese with English abstract)
    [33]Leith D,Licth W.The collection efficiency of cyclone type particle collectors:A new theoretical approach[J].AIChESymp Series,1972,68(126):196-206.
    [34]李强.旋风除尘器优化设计及分离特性研究[D].长沙:中南大学,2008.Li Qiang.Optimization Design and Study on Separation Characteristics of Cyclone Separator[D].Changsha:Zhongnan University,2008.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700