用户名: 密码: 验证码:
镀镍多壁碳纳米管对序批式反应器性能及其微生物群落的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of MWCNTs-Ni on the Performance and Microbial Community of Sequencing Batch Reactor
  • 作者:高峰 ; 马丙瑞 ; 李姗姗 ; 于娜玲 ; 赵长坤 ; 李志伟 ; 高孟春
  • 英文作者:GAO Feng;MA Bing-Rui;LI Shan-Shan;YU Na-Ling;ZHAO Chang-Kun;LI Zhi-Wei;GAO Meng-Chun;The Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education;College of Environmental Science and Engineering, Ocean University of China;
  • 关键词:MWCNTs-Ni ; 活性污泥 ; 脱氮速率 ; 微生物酶活性 ; 高通量测序
  • 英文关键词:MWCNTs-Ni;;activated sludge;;nitrogen removal rates;;microbial enzymatic activity;;high-throughput sequencing
  • 中文刊名:中国海洋大学学报(自然科学版)
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学海洋环境与生态教育部重点实验室;中国海洋大学环境科学与工程学院;
  • 出版日期:2019-07-16
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金项目(51178437)资助~~
  • 语种:中文;
  • 页:124-132
  • 页数:9
  • CN:37-1414/P
  • ISSN:1672-5174
  • 分类号:X703
摘要
本文研究了长期暴露条件下镀镍多壁碳纳米管(MWCNTs-Ni)对序批式反应器(SBR)性能、微生物酶活性和微生物群落的影响。研究结果表明,10 mg/L MWCNTs-Ni的长期暴露未对SBR去除有机物产生影响,而NH_4~+-N的去除率由(99.10±0.60)%明显降至(39.04±1.61)%。与进水中未加入MWCNTs-Ni时的第32天相比,活性污泥比耗氧速率(SOUR)和脱氢酶(DHA)活性在第148天时分别降低了17.43%和24.32%;而脱氮速率和与脱氮相关的微生物酶活性均降低了60%以上,从而导致SBR对氮的去除效果明显降低。MWCNTs-Ni的长期暴露导致活性污泥活性氧(ROS)产生量和乳酸脱氢酶(LDH)释放量在第148天时分别增加了67.23%和65.33%,表明MWCNTs-Ni的长期暴露能够诱导活性污泥中微生物产生氧化应激和细胞膜损伤。高通量测序结果表明,长期暴露于10 mg/L的MWCNTs-Ni条件下,活性污泥中与硝化过程相关菌属(Nitrosomonas、Nitrosospir、Nitrospira)和与反硝化过程相关菌属(Dokdonella、Dechloromonas、Steroidobacter、Devosia、Thermomonas)的相对丰度明显降低,进而影响到SBR对氮的去除。该研究结果可为评价MWCNTsNi对污水生物处理系统的潜在影响提供一定的理论基础和技术依据。
        The performance, microbial enzymatic activity and microbial community of a sequencing batch reactor(SBR) were investigated under long-term exposure to Ni coated multi-walled carbon nanotubes(MWCNTs-Ni). The COD removal had no obvious variation at 10 mg/L MWCNTs-Ni, whereas the NH_4~+-N removal efficiency decreased from(99.10±0.60)% at 0 mg/L MWCNTs-Ni to(39.04±1.61)% at 10 mg/L MWCNTs-Ni. Compared to 32 d without MWCNTs-Ni, the SOUR and DHA activity decreased by 17.43% and 24.32% at 148 d, respectively, while nitrogen removal rates and microbial enzymatic activity related to nitrogen removal reduced more than 60%, which might lead to the decrease of NH_4~+-N removal efficiency. The ROS production and LDH release increased by 67.23% and 65.33% at 148 d, respectively, indicating that MWCNTs-Ni could induce oxidative stress and destroy the cytomembrane integrality. High throughput sequencing indicated that the relative abundance of some genera related to nitrification(e.g. Nitrosomonas, Nitrosospir, Nitrospira) and denitrification(e.g. Dokdonella, Dechloromonas, Steroidobacter, Devosia, Thermomonas) decreased at 10 mg/L MWCNTs-Ni, which further effected the nitrogen removal. The present results can provide some theoretical basis and technical support for evaluating the potential impact of MWCNTs-Ni on biological wastewater treatment systems.
引文
[1] Yadav T,Mungray A A,Mungray A K.Effect of multiwalled carbon nanotubes on UASB microbial consortium[J].Environmental Science and Pollution Research,2016,23(5):4063-4072.
    [2] Jia G,Wang H F,Yan L,et al.Cytotoxicity of carbon nanomaterials:single-wall nanotube,multi-wall nanotube,and fullerene[J].Environmental Science and Technology,2005,39(5):1378-83.
    [3] 周庆祥,肖军平,汪卫东,等.碳纳米管应用研究进展[J].化工进展,2006,25(7):750-754.Zhou Q X,Xiao J P,Wang W D,et al.Progress of the application of carbon nanotubes[J].Chemical Engineering Progress,2006,25(7):750-754.
    [4] Guo Y Y,Zhang J,Zheng Y F,et al.Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro[J].Mutation Research,2011,721(2):184-191.
    [5] Reddy A R N,Rao M V,Krishna D R,et al.Evaluation of oxidative stress and anti-oxidant status in rat serum following exposure of carbon nanotubes[J].Regulatory Toxicology and Pharmacology,2011,59(2):251-257.
    [6] Lin C,Fugetsu B,Su Y B,et al.Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells[J].Journal of Hazardous Materials,2009,170(2):578-583.
    [7] Lawrence J R,Waiser M J,Swerhone G D W,et al.Effects of fullerene(C60),multi-wall carbon nanotubes(MWCNT),single wall carbon nanotubes(SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities[J].Environmental Science and Pollution Research,2016,23(10):10090-10102.
    [8] Gottschalk F,Sonderer T,Scholz R W,et al.Modeled environmental concentrations of engineered nanomaterials(TiO2,ZnO,Ag,CNT,fullerenes) for different regions[J].Environmental Science and Technology,2009,43(24):9216-9222.
    [9] Gottschalk F,Sun T,Nowack B.Environmental concentrations of engineered nanomaterials:Review of modeling and analytical studies[J].Environmental Pollution,2013,181:287-300.
    [10] Luongo L A,Zhang X Q.Toxicity of carbon nanotubes to the activated sludge process[J].Journal of Hazardous Materials,2010,178:356-362.
    [11] Zheng X,Su Y L,Chen Y G,et al.The effects of carbon nanotubes on nitrogen and phosphorus removal from real wastewater in the activated sludge system[J].RSC Advances,2014,4(86):45953-45959.
    [12] Hai R,Wang Y L,Wang X H,et al.Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge[J].Plos One,2014,9(9):1-9.
    [13] 张楠,陈海路,胡书春,等.化学镀镍碳纳米管的制备及其电磁学和吸波性能研究[J].化工新型材料,2012,40(5):81-83.Zhang N,Chen H L,Hu S C,et al.Study on the preparation,electromagnetic and microwave absorbing properties of chemical nickel-plating carbon nanotubes[J].New Chemical Materials,2012,40(5):81-83.
    [14] 沈曾民,赵东林.镀镍碳纳米管的微波吸收性能研究[J].新型炭材料,2001,16(1):1-4.Shen Z M,Zhao D L.Study on the microwave absorbing property of composite material containing carbon nanotubes with Ni coating[J].New Carbon Materials,2001,16(1):1-4.
    [15] Keller A A,Wang H,Zhou D,et al.Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices[J].Environmental Science and Technology,2010,44:1962-1967.
    [16] 国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.Chinese NEPA.Water and Wastewater Monitoring Methods[M].Fourth ed.Beijing:Chinese Environmental Science Publishing Press,2002.
    [17] Ma B R,Wang S,Li Z W,et al.Magnetic Fe3O4 nanoparticles induced effects on performance and microbial community of activated sludge from a sequencing batch reactor under long-term exposure[J].Bioresource Technology,2017,225:377-385.
    [18] Zhang Y,Li B,Xu R X,et al.Effects of pressurized aeration on organic degradation efficiency and bacterial community structure of activated sludge treating saline wastewater[J].Bioresource Technology,2016,222:182-189.
    [19] Zheng X,Wu R,Chen Y G.Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J].Environmental Science and Technology,2011,45(7):2826-2832.
    [20] Halliwell B,Whiteman M.Measuring reactive species and oxidative damage in vivo and in cell culture:How should you do it and what do the results mean[J].British Journal of Pharmacology,2004,142(2):231-255.
    [21] Shen C,Turney T W,Piva T J,et al.Comparison of UVA-induced ROS and sunscreen nanoparticle-generated ROS in human immune cells[J].Photochemical and Photobiological Sciences,2014,13(5):781-788
    [22] Ma B R,Yu N L,Han Y T,et al.Effect of magnesium oxide nanoparticles on microbial diversity and removal performance of sequencing batch reactor[J].Journal of Environmental Management,2018,222:475-482.
    [23] Brandt K K,Hessels?e M,Roslev P,et al.Toxic effects of linear alkylbenzene sulfonate on metabolic activity,growth rate,and microcolony formation of Nitrosomonas and Nitrosospira strains[J].Applied and Environmental Microbiology,2001,67(6):2489-2498.
    [24] Blackburne R,Vadivelu V M,Yuan Z G,et al.Kinetic characterization of an enriched Nitrospira culture with comparison to Nitrobacter[J].Water Research,2007,41(14):3033-3042.
    [25] Adrados B,Sanchez O,Arias C A,et al.Microbial communities from different types of natural wastewater treatment systems:Vertical and horizontal flow constructed wetlands and biofilters[J].Water Research,2014,55(10):304-312.
    [26] Horn M A,Ihssen J,Matthies C,et al.Dechloromonas denitrificans sp.nov.,Flavobacterium denitrificans sp.nov.,Paenibacillus anaericanus sp.nov.and Paenibacillus terrae strain MH72,N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa[J].International Journal of Systematic and Evolutionary Microbiology,2005,55(3):1255-1265.
    [27] Fahrbach M,Kuever J,Remesch M,et al.Steroidobacter denitrificans gen.nov.,sp.nov.,a steroidal hormone-degrading gammaproteobacterium[J].International Journal of Systematic and Evolutionary Microbiology,2008,58(9):2215-2223.
    [28] Rivas R,Willems A,Subba-Rao N S,et al.Description of Devosia neptuniae sp.nov.that Nodulates and Fixes nitrogen in symbiosis with Neptunia natans,an aquatic legume from India[J].Systematic and Applied Microbiology,2003,26(26):47-53.
    [29] Mergaert J,Cnockaert M C,Swings J.Thermomonas fusca sp.nov.and Thermomonas brevis sp.nov.,two mesophilic species isolated from a denitrification reactor with poly(ε-caprolactone) plastic granules as fixed bed,and emended description of the genus Thermomonas[J].International Journal of Systematic and Evolutionary Microbiology,2003,53(6):1961-1966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700