用户名: 密码: 验证码:
基于浮游生物群落和水文连通的黄河三角洲湿地优先恢复节点筛选
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Screening of Priority Restoration Nodes in wetlands in Yellow River Delta based on Plankton Community and Hydrological Connectivity
  • 作者:王倩 ; 崔圆 ; 王晨 ; 郭雨桐 ; 修玉娇 ; 肖蓉 ; 张明祥
  • 英文作者:WANG Qian;CUI Yuan;WANG Chen;GUO Yutong;XIU Yujiao;XIAO Rong;ZHANG Mingxiang;College of Nature Conservation, Beijing Forestry University;College of Environment and Resources, Fuzhou University;
  • 关键词:浮游植物 ; 浮游动物 ; 水文连通 ; 斑块重要值 ; 优先恢复节点 ; 黄河三角洲
  • 英文关键词:phytoplankton;;zooplankton;;hydrological connectivity;;patch important value;;priority recovery node;;Yellow River Delta
  • 中文刊名:湿地科学
  • 英文刊名:Wetland Science
  • 机构:北京林业大学自然保护区学院;福州大学环境与资源学院;
  • 出版日期:2019-06-15
  • 出版单位:湿地科学
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划项目(2017YFC0505903);; 国家自然科学基金项目(51609005);; 北京林业大学青年教师科学研究中长期项目(2015ZCQ-BH-01)资助
  • 语种:中文;
  • 页:66-76
  • 页数:11
  • CN:22-1349/P
  • ISSN:1672-5948
  • 分类号:X171.4
摘要
由于气候变化、人类活动等原因,黄河三角洲水文连通受到严重影响,湿地功能逐渐弱化,生物多样性水平日益下降。2017年7月,研究了黄河三角洲潮汐区、恢复区和黄河中的浮游生物群落组成及结构特征;量化了各区域的水文连通度和各水文节点所在水体斑块的斑块重要值。根据浮游生物群落组成多样性和水文连通的斑块重要值两类定量化指标,在黄河三角洲典型湿地区[包括大汶流潮汐区(DT)、大汶流恢复区(DR)、黄河口潮汐区(HT)、黄河口恢复区(HR)和黄河(YR)],筛选出需要优先恢复的14个水文节点,包括6个Ⅰ级优先恢复节点(DT2、DT6、DR1、DR4、DR6和DR10)和8个Ⅱ级优先恢复节点(HT1、HR1、HR3、HR4、YR1、YR2、YR5和YR6);同时,对各优先恢复节点提出了相应的恢复措施,例如,对于恢复区内的6个优先恢复节点(DR4、DR6、DR10、HR1、HR3和HR4),可以利用多种植物组合构建人工浮岛;对于黄河内的4个优先恢复节点(YR1、YR2、YR5和YR6),可以在其周围或岸边种植香蒲(Typha orientalis)、芦苇(Phragmites australis)、千屈菜(Lythrum salicaria)等挺水植物,以去除水体和沉积物中的氮和磷,从而提高黄河中的浮游植物和浮游动物的多样性水平;通过提高潮沟系统的水文连通度或改变潮沟内水流流速,提高潮汐区3个优先恢复节点(HT1、DT2和DT6)的浮游植物和浮游动物的多样性水平等。
        Due to climate change and man-made damage, the hydrological connectivity of the Yellow River Delta has been seriously affected, and the ecological functions and biodiversity of wetlands have been declining. In July 2017, the composition and structural characteristics of plankton communities in the Dawenliu and Yellow River Mouth tidal zones, recovery zones and the Yellow River in the Yellow River Delta were studied; the hydrological connectivity of each zone and the patch important values were quantified. Based on the two types of quantitative indicators of plankton community composition and hydrological connectivity,14 hydrological nodes that need recovery in the Yellow River Delta were selected, including 6 priority recovery nodes(DT2, DT6,DR1, DR4, DR6, DR10) and 8 secondary priority recovery nodes(HT1, HR1,HR3, HR4, YR1, YR2, YR5, YR6). At the same time, corresponding recovery measures were proposed for each priority recovery node. For example, for the 6 recovery nodes(DR4, DR6, DR10, HR1, HR3, and HR4)in the recovery zone, a variety of plant combinations could be used to construct artificial floating islands;emerged plants such as Typha orientalis, Phragmites australis, and Lythrum salicariacan be planted around the 4 recovery nodes(YR1, YR2, YR5 and YR6) in the Yellow River to remove nitrogen and phosphorus from water bodies and sediments, thereby improving plankton biodiversity; the phytoplankton and zooplankton diversity of 3 recovery nodes(HT1, DT2 and DT6) in the tidal zone could be improved by increasing the hydrological connectivity of the tidal channel system or changing the flow velocity in the tidal channel.
引文
[1]张光亮,白军红,郗敏,等.黄河三角洲湿地土壤质量综合评价[J].湿地科学, 2015, 1133(6):744-751.
    [2]于君宝,褚磊,宁凯,等.黄河三角洲滨海湿地土壤硫含量分布特征[J].湿地科学, 2014, 1122(5):559-565.
    [3]崔保山,蔡燕子,谢湉,等.湿地水文连通的生态效应研究进展及发展趋势[J].北京师范大学学报:自然科学版, 2016, 5522(6):738-746.
    [4]Amoros C, Bornette G. Connectivity and biocomplexity inwaterbodies of riverine floodplains[J]. Freshwater Biology, 2002, 47(4):761-776.
    [5]张仲胜,于小娟,宋晓林,等.水文连通对湿地生态系统关键过程及功能影响研究进展[J].湿地科学, 2019, 1177(1):1-8.
    [6]高常军,高晓翠,贾鹏.水文连通性研究进展[J].应用与环境生物学报, 2017, 2233(3):586-594.
    [7]李晓文,李梦迪,梁晨,等.湿地恢复若干问题探讨[J].自然资源学报, 2014, 2299(7):1257-1269.
    [8]White D, Fennessy S.Modeling the suitability of wetland restoration potential at the watershed scale[J]. Ecological Engineering,2005, 2244(4):359-377.
    [9]欧维新,袁薇锦.基于景观连接度的盐城滨海湿地丹顶鹤生境斑块重要性评价[J].资源科学, 2015, 3377(4):823-831.
    [10]曲艺,罗春雨,张弘强,等.基于历史生物多样性与湿地景观结构的三江平原湿地恢复优先性研究[J].生态学报, 2018, 38(16):5709-5716.
    [11]窦勇,霍达,姜智飞,等.海河入海口表层水体浮游生物群落特征及与环境因子的相关性研究[J].生态环境学报, 2016, 25(4):647-655.
    [12]刘晓彤.夏、秋季黄河口及邻近海域浮游植物群落结构和粒级结构的研究[D].青岛:中国海洋大学, 2011.
    [13]栾青杉,孙军,宋书群,等.长江口夏季浮游植物群落与环境因子的典范对应分析[J].植物生态学报, 2007, 3311(3):445-450.
    [14]Larsson M E, Ajani PA, Rubio A M, et al. Long-term perspective on the relationship between phytoplankton and nutrient concentrations in a southeastern Australian estuary[J]. Marine Pollution Bulletin, 2017, 11144(1):227-238.
    [15]Sanful P O, Aikins S, Hecky R E. Depth distribution of zooplankton in relation to limnological gradients under different stratification and interannual regimes in a deep, tropical crater lake[J]. Annales de Limnologie-international Journal of Limnology, 2017, 5533:293-307.
    [16]赵清贺,马丽娇,刘倩,等.黄河中下游典型河岸缓冲带植被景观连接度及其网络构建[J].中国生态农业学报, 2017, 2255(7):983-992.
    [17]刘歆,角媛梅,王梅,等.基于图论的哈尼梯田区河渠网络关键节点和廊道评价[J].生态学杂志, 2018, 3377(1):287-294.
    [18]董张玉,刘殿伟,王宗明,等.基于空间分析的东北地区湿地优先恢复[J].应用生态学报, 2013, 2244(1):170-176.
    [19]潘超.神农架大九湖浮游生物群落与食物网结构的研究[D].武汉:湖北工业大学, 2018.
    [20]胡俊,舒卫先,韦翠珍,等.基于浮游植物群落的纵向连通性初步研究[J].生态环境学报, 2018, 2277(1):79-86.
    [21]逄谦.基于图论的盐城滨海湿地丹顶鹤生境连接度变化及恢复研究[D].南京:南京农业大学, 2014.
    [22]彭燕侠.保定府河浮游生物群落结构及多样性研究[D].保定:河北农业大学, 2015.
    [23]卢云黎,王琪,袁静,等.长江武汉段和汉江武汉段浮游藻类群落比较研究[J].水利水电快报, 2018, 3399(2):45-52.
    [24]田旺.湖泊浮游生物群落对环境和生物多样性的响应机制[D].北京:华北电力大学, 2017.
    [25]戴美霞,朱艺峰,林霞,等.象山港浮游动物β多样性及其成分变化的环境因子解释[J].生态学报, 2017, 3377(17):5780-5789.
    [26]闫丹丹.松花江下游沿江湿地水文连通性恢复研究[D].北京:中国科学院大学, 2014.
    [27]杨宋琪,祖廷勋,王怀斌,等.黑河张掖段浮游植物群落结构及其与环境因子的关系[J].湖泊科学, 2019, 322(1):159-170.
    [28]Anderson D M, Glibert P M, Burkholder J M. Harmful algal blooms and eutrophication:nutrient sources, composition, and consequences[J]. Estuaries, 2002, 255(4):704-726.
    [29]陈建良,胡明明,周怀东,等.洱海蓝藻水华暴发期浮游植物群落变化及影响因素[J].水生生物学报, 2015, 3399(1):24-39.
    [30]Jeppesen E, Peder Jensen J, S?ndergaard M, et al. Trophic structure, species richness and biodiversity in Danish lakes:changes along a phosphorus gradient[J]. Freshwater Biology, 2000, 45(2):201-218.
    [31]Rodrigues L C, Simōes N R, Bovo-Scomparin V M, et al. Phytoplankton alpha diversity as an indicator of environmental changes in a neotropical floodplain[J]. Ecological Indicators, 2015, 48(1):334-341.
    [32]韩阳,李雪梅,朱延姝.环境污染与植物功能[M].北京:化学工业出版社, 2005.
    [33]张泽西,刘家凯,张振明,等.种植不同植物及其组合的人工浮岛对水中氮、磷的去除效果比较[J].湿地科学, 2018, 166(2):273-278.
    [34]徐艳红,于鲁冀,吕晓燕,等.淮河流域河南段退化河流生态系统修复模式[J].环境工程学报, 2017, 11(1):143-150.
    [35]Carrara F, Altermatt F, Rodrigueziturbe I, et al. Dendritic connectivity controls biodiversity patterns in experimental metacommunities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 110099(15):5761-5766.
    [36]Fullerton A H, Lindley S T, Pess G R, et al. Human influence on the spatial structure of threatened Pacific Salmon Metapopulations[J]. Conservation Biology, 2011, 2255(5):932-944.
    [37]沈才智,刘丙万.生境对生物多样性影响研究进展[J].现代农业科技, 2011(23):305-307.
    [38]Zhou Z, Olabarrieta M, Stefanon L, et al. A comparative study of physical and numerical modeling of tidal network ontogeny[J]. Journal of Geophysical Research:Earth Surface, 2014, 119(4):892-912.
    [39]龙天渝,蒙国湖,吴磊,等.水动力条件对嘉陵江重庆主城段藻类生长影响的数值模拟[J].环境科学, 2010, 3311(7):1498-1503.
    [40]魏桢,贾海峰,姜其贵,等.再生水补水河道中流速对浮游藻类生长影响的模拟实验[J].环境工程学报, 2017, 111(12):6540-6546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700