用户名: 密码: 验证码:
梯度纳米结构金属力学性能、变形机理和多尺度计算研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in Mechanical Properties,Deformation Mechanisms and Multiscale Simulations of Gradient Nanostructured Metals
  • 作者:周昊飞
  • 英文作者:Haofei Zhou;Department of Engineering Mechanics,Center for X-Mechanics,Zhejiang University;
  • 关键词:梯度纳米结构金属 ; 力学性能 ; 塑性变形机理 ; 多尺度计算与模拟
  • 英文关键词:gradient nanostructured metals;;mechanical property;;plastic deformation mechanism;;multiscale modeling and simulation
  • 中文刊名:固体力学学报
  • 英文刊名:Chinese Journal of Solid Mechanics
  • 机构:浙江大学工程力学系,交叉力学中心;
  • 出版日期:2019-03-06 10:35
  • 出版单位:固体力学学报
  • 年:2019
  • 期:03
  • 基金:浙江大学“百人计划”资助
  • 语种:中文;
  • 页:4-23
  • 页数:20
  • CN:42-1250/O3
  • ISSN:0254-7805
  • 分类号:TB383.1;TG113.2
摘要
近年来,梯度纳米结构金属因其优越的力学性能和独特的塑性变形机理受到广泛关注,已成为材料与力学学科的热点和前沿.论文首先介绍梯度纳米结构金属的强度、塑性、加工硬化和抗疲劳等核心力学性能,以及晶粒长大、塑性应变梯度和几何必需位错等塑性变形机理及其力学研究.其次介绍梯度纳米结构金属的多尺度计算与模拟研究.最后讨论梯度纳米结构金属研究领域存在的挑战.
        Gradient nanostructured metals are increasingly being investigated due to their unique mechanical properties and deformation mechanisms,and are emerging as a new research frontier in mechanical science and mechanics.This review summarizes strength,ductility,fatigue resistance and other mechanical properties of gradient nanostructured metals,followed by a discussion about the plastic deformation mechanisms of gradient nanostructured metals,including grain growth,plastic strain gradient and geometrically necessary dislocations.The multiscale modeling and simulations of gradient nanostructured metals are introduced with a focus on the finite element method and molecular dynamics simulation method.A range of challenges to the research of mechanics of gradient nanostructured metals are proposed in the end.
引文
[1]Suresh S.Graded materials for resistance to contact deformation and damage[J].Science,2001,292(5526):2447-2451.
    [2]Fang T H,Li W L,Tao N R,Lu K.Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J].Science,2011,331(6024):1587-1590.
    [3]Wu X L,Jiang P,Chen L,Yuan F P,Zhu Y T T.Extraordinary strain hardening by gradient structure[J].Proceedings of the National Academy of Sciences U.S.A.,2014,111(20):7197-7201.
    [4]Wei Y J,Li Y Q,Zhu L C,Liu Y,Lei X Q,Wang G,Wu Y X,Mi Z L,Liu J B,Wang H T,Gao H J.Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins[J].Nature Communications,2014,5:3580.
    [5]Cheng Z,Zhou H,Lu Q,Gao H,Lu L.Extra strengthening and work hardening in gradient nanotwinned metals[J].Science,2018,362(6414):eaau1925.
    [6]Roland T,Retraint D,Lu K,Lu J.Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J].Scripta Materialia,2006,54(11):1949-1954.
    [7]Huang H W,Wang Z B,Yong X P,Lu K.Enhancing torsion fatigue behaviour of a martensitic stainless steel by generating gradient nanograined layer via surface mechanical grinding treatment[J].Materials Science and Technology,2013,29(10):1200-1205.
    [8]Lin Y,Pan J,Zhou H F,Gao H J,Li Y.Mechanical properties and optimal grain size distribution profile of gradient grained nickel[J].Acta Materialia,2018,153:279-289.
    [9]Lu X L,Lu Q H,Li Y,Lu L.Gradient confinement induced uniform tensile ductility in metallic glass[J].Scientific Reports,2013,3:3319.
    [10]Yang M X,Pan Y,Yuan F P,Zhu Y T,Wu X L.Back stress strengthening and strain hardening in gradient structure[J].Materials Research Letters,2016,4(3):145-151.
    [11]Yuan F P,Chen P,Feng Y P,Jiang P,Wu X L.Strain hardening behaviors and strain rate sensitivity of gradient-grained Fe under compression over a wide range of strain rates[J].Mechanics of Materials,2016,95:71-82.
    [12]Zhou X,Li X Y,Lu K.Strain hardening in gradient nano-grained Cu at 77 K[J].Scripta Materialia,2018,153:6-9.
    [13]Li J J,Chen S H,Wu X L,Soh A K,Lu J A.The main factor influencing the tensile properties of surface nano-crystallized graded materials[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2010,527(26):7040-7044.
    [14]Li J J,Soh A K.Enhanced ductility of surface nanocrystallized materials by modulating grain size gradient[J].Modelling and Simulation in Materials Science and Engineering,2012,20(8):085002.
    [15]Li J J,Soh A K.Modeling of the plastic deformation of nanostructured materials with grain size gradient[J].International Journal of Plasticity,2012,39:88-102.
    [16]Li J J,Chen S H,Wu X L,Soh A K.A physical model revealing strong strain hardening in nanograined metals induced by grain size gradient structure[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2015,620:16-21.
    [17]Li J J,Weng G J,Chen S H,Wu X L.On strain hardening mechanism in gradient nanostructures[J].International Journal of Plasticity,2017,88:89-107.
    [18]Zeng Z,Li X Y,Xu D S,Lu L,Gao H J,Zhu T.Gradient plasticity in gradient nano-grained metals[J].Extreme Mechanics Letters,2016,8:213-219.
    [19]Wang Y,Yang G X,Wang W J,Wang X,Li Q,Wei Y J.Optimal stress and deformation partition in gradient materials for better strength and tensile ductility:A numerical investigation[J].Scientific Reports,2017,7:10954.
    [20]Li Z,Yang F.Grain rotations during uniaxial deformation of gradient nano-grained metals using crystal plasticity finite element simulations[J].Extreme Mechanics Letters,2017,16:41-48.
    [21]周昊飞,曲绍兴.利用分子动力学研究梯度纳米孪晶Cu的微观变形机理[J].金属学报,2014,2:226-230.
    [22]Zhou K,Zhang T,Liu B,Yao Y J.Molecular dynamics simulations of tensile deformation of gradient nano-grained copper film[J].Computational Materials Science,2018,142:389-394.
    [23]Fang Q H,Li L,Li J,Wu H.Strengthening mechanism of gradient nanostructured body-centred cubic iron film:From inverse Hall-Petch to classic HallPetch[J].Computational Materials Science,2018,152:236-242.
    [24]Li L,Fang Q,Li J,Wu H.Origin of strengtheningsoftening trade-off in gradient nanostructured bodycentred cubic alloys[J].Journal of Alloys and Compounds,2019,775:270-280.
    [25]Fang T H,Tao N R,Lu K.Tension-induced softening and hardening in gradient nanograined surface layer in copper[J].Scripta Materialia,2014,77:17-20.
    [26]Roland T,Retraint D,Lu K,Lu J.Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,445:281-288.
    [27]Ma Z W,Liu J B,Wang G,Wang H T,Wei Y J,Gao H J.Strength gradient enhances fatigue resistance of steels[J].Scientific Reports,2016,6:22156.
    [28]Ma Z W,Ren Y,Li R G,Wang Y D,Zhou L L,Wu X L,Wei Y J,Gao H J.Cryogenic temperature toughening and strengthening due to gradient phase structure[J].Materials Science and Engineering aStructural Materials Properties Microstructure and Processing,2018,712:358-364.
    [29]Liu Y,Wei Y J.Gradient driven anomalous reversible plasticity in conventional magnesium alloys[J].Extreme Mechanics Letters,2016,9:158-164.
    [30]Chen A Y,Liu J B,Wang H T,Lu J,Wang Y M.Gradient twinned 304 stainless steels for high strength and high ductility[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2016,667:179-188.
    [31]卢柯.梯度纳米结构材料[J].金属学报,2015,51(1):1-10.
    [32]Zhang P,Li S X,Zhang Z F.General relationship between strength and hardness[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2011,529:62-73.
    [33]Edalati K,Fujioka T,Horita Z.Microstructure and mechanical properties of pure Cu processed by highpressure torsion[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,497(1-2):168-173.
    [34]You Z S,Lu L,Lu K.Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins[J].Acta Materialia,2011,59(18):6927-6937.
    [35]Gleiter H.Nanocrystalline Materials[J].Progress in Materials Science,1989,33(4):223-315.
    [36]Meyers M A,Mishra A,Benson D J.Mechanical properties of nanocrystalline materials[J].Progress in Materials Science,2006,51(4):427-556.
    [37]Lu K,Lu J.Surface nanocrystallization(SNC)of metallic materials-presentation of the concept behind a new approach[J].Journal of Materials Science&Technology,1999,15(3):193-197.
    [38]Lu K,Lu J.Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J].Materials Science and Engineering aStructural Materials Properties Microstructure and Processing,2004,375:38-45.
    [39]Zhu K Y,Vassel A,Brisset F,Lu K,Lu J.Nanostructure formation mechanism of alpha-titanium using SMAT[J].Acta Materialia,2004,52(14):4101-4110.
    [40]Li W L,Tao N R,Lu K.Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment[J].Scripta Materialia,2008,59(5):546-549.
    [41]Wu X L,Jiang P,Chen L,Zhang J F,Yuan F P,Zhu Y T.Synergetic strengthening by gradient structure[J].Materials Research Letters,2014,2(4):185-191.
    [42]Li W B,Yuan F P,Wu X L.Atomistic tensile deformation mechanisms of Fe with gradient nanograined structure[J].Aip Advances,2015,5(8):087120.
    [43]Wu X L,Yang M X,Yuan F P,Chen L,Zhu Y T.Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility[J].Acta Materialia,2016,112:337-346.
    [44]Bian X D,Yuan F P,Wu X L,Zhu Y T.The evolution of strain gradient and anisotropy in gradientstructured metal[J].Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2017,48a(9):3951-3960.
    [45]Bian X D,Yuan F P,Zhu Y T,Wu X L.Gradient structure produces superior dynamic shear properties[J].Materials Research Letters,2017,5(7):501-507.
    [46]Chen L,Yuan F P,Jiang P,Xie J J,Wu X L.Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2017,694:98-109.
    [47]Xing J X,Yuan F P,Wu X L.Enhanced quasi-static and dynamic shear properties by heterogeneous gradient and lamella structures in 301stainless steels[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2017,680:305-316.
    [48]Liu X L,Yuan F P,Zhu Y T,Wu X L.Extraordinary Bauschinger effect in gradient structured copper[J].Scripta Materialia,2018,150:57-60.
    [49]Ding J,Li Q,Li J,Xue S,Fan Z,Wang H,Zhang X.Mechanical behavior of structurally gradient nickel alloy[J].Acta Materialia,2018,149:57-67.
    [50]Liu D,Liu D X,Zhang X H,Liu C S,Ao N.Surface nanocrystallization of 17-4precipitation-hardening stainless steel subjected to ultrasonic surface rolling process[J].Materials Science and Engineering aStructural Materials Properties Microstructure and Processing,2018,726:69-81.
    [51]Ye C,Telang A,Gill A S,Suslov S,Idell Y,Zweiacker K,Wiezorek J M K,Zhou Z,Qian D,Mannava S R,Vasudevan V K.Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304austenitic stainless steel for high strength and high ductility[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2014,613:274-288.
    [52]Ortiz A L,Tian J W,Villegas J C,Shaw L L,Liaw P K.Interrogation of the microstructure and residual stress of a nickel-base alloy subjected to surface severe plastic deformation[J].Acta Materialia,2008,56(3):413-426.
    [53]Tian J W,Dai K,Villegas J C,Shaw L,Liaw P K,Klarstrom D L,Ortiz A L.Tensile properties of a nickel-base alloy subjected to surface severe plastic deformation[J].Materials Science and Engineering aStructural Materials Properties Microstructure and Processing,2008,493(1-2):176-183.
    [54]Tian J W,Shaw L,Liaw P K,Dai K.On the ductility of a surface severely plastically deformed nickel alloy[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2008,498(1-2):216-224.
    [55]Xiang Y,Li T,Suo Z G,Vlassak J J.High ductility of a metal film adherent on a polymer substrate[J].Applied Physics Letters,2005,87(16):161910.
    [56]Lu N S,Wang X,Suo Z G,Vlassak J.Failure by simultaneous grain growth,strain localization,and interface debonding in metal films on polymer substrates[J].Journal of Materials Research,2009,24(2):379-385.
    [57]Ma Z W,Liu J B,Wang G,Wang H T,Wei Y J,Gao H J.Strength gradient enhances fatigue resistance of steels[J].Scientific Reports,2016,6:22156.
    [58]Wang H T,Tao N R,Lu K.Architectured surface layer with a gradient nanotwinned structure in a FeMn austenitic steel[J].Scripta Materialia,2013,68(1):22-27.
    [59]Huang H W,Wang Z B,Lu J,Lu K.Fatigue behaviors of AISI 316Lstainless steel with a gradient nanostructured surface layer[J].Acta Materialia,2015,87:150-160.
    [60]Yang L,Tao N R,Lu K,Lu L.Enhanced fatigue resistance of Cu with a gradient nanograined surface layer[J].Scripta Materialia,2013,68(10):801-804.
    [61]Luo H,Lu W,Fang X,Ponge D,Li Z,Raabe D.Beating hydrogen with its own weapon:Nano-twin gradients enhance embrittlement resistance of a highentropy alloy[J].Materials Today,2018,21(10):1003-1009.
    [62]Zhou X,Li X Y,Lu K.Enhanced thermal stability of nanograined metals below a critical grain size[J].Science,2018,360(6388):526-529.
    [63]You Z S,Li X Y,Gui L J,Lu Q H,Zhu T,Gao HJ,Lu L.Plastic anisotropy and associated deformation mechanisms in nanotwinned metals[J].Acta Materialia,2013,61(1):217-227.
    [64]Zhu T,Gao H J.Plastic deformation mechanism in nanotwinned metals:An insight from molecular dynamics and mechanistic modeling[J].Scripta Materialia,2012,66(11):843-848.
    [65]Zhu L L,Ruan H H,Chen A Y,Guo X,Lu J.Microstructures-based constitutive analysis for mechanical properties of gradient-nanostructured 304stainless steels[J].Acta Materialia,2017,128:375-390.
    [66]Zhu L L,Wen C S,Gao C Y,Guo X,Lu J.A study of dynamic plasticity in austenite stainless steels with agradient distribution of nanoscale twins[J].Scripta Materialia,2017,133:49-53.
    [67]Fleck N A,Muller G M,Ashby M F,Hutchinson JW.Strain gradient plasticity-theory and experiment[J].Acta Metallurgica et Materialia,1994,42(2):475-487.
    [68]Nix W D,Gao H J.Indentation size effects in crystalline materials:A law for strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,1998,46(3):411-425.
    [69]Gao H,Huang Y,Nix W D,Hutchinson J W.Mechanism-based strain gradient plasticity-I.Theory[J].Journal of the Mechanics and Physics of Solids,1999,47(6):1239-1263.
    [70]陈少华,王自强.应变梯度理论进展[J].力学进展,2003,33(2):207-216.
    [71]黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999.
    [72]Wei Y G,Hutchinson J W.Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,1997,45(8):1253-1273.
    [73]Cao A J,Wei Y G.Atomistic simulations of the mechanical behavior of fivefold twinned nanowires[J].Physical Review B,2006,74(21):214108.
    [74]Cao A J,Wei Y G.Molecular dynamics simulation of plastic deformation of nanotwinned copper[J].Journal of Applied Physics,2007,102(8):083511.
    [75]Sun L G,He X Q,Lu J.Nanotwinned and hierarchical nanotwinned metals:a review of experimental,computational and theoretical efforts[J].Npj Computational Materials,2018,4:UNSP 6.
    [76]Li X Y,Wei Y J,Yang W,Gao H J.Competing grain-boundary-and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(38):16108-16113.
    [77]Li X Y,Wei Y J,Lu L,Lu K,Gao H J.Dislocation nucleation governed softening and maximum strength in nano-twinned metals[J].Nature,2010,464(7290):877-880.
    [78]Jang D C,Li X Y,Gao H J,Greer J R.Deformation mechanisms in nanotwinned metal nanopillars[J].Nature Nanotechnology,2012,7(9):594-601.
    [79]Zhou H F,Li X Y,Qu S X,Yang W,Gao H J.Ajogged dislocation governed strengthening mechanism in nanotwinned metals[J].Nano Letters,2014,14(9):5075-5080.
    [80]Zhou H F,Li X Y,Wang Y,Liu Z S,Yang W,Gao H J.Torsional detwinning domino in nanotwinned one-dimensional nanostructures[J].Nano Letters,2015,15(9):6082-6087.
    [81]Zhu Y X,Li Z H,Huang M S,Fan H D.Study on interactions of an edge dislocation with vacancy-Hcomplex by atomistic modelling[J].International Journal of Plasticity,2017,92:31-44.
    [82]Jian W R,Wang L,Li B,Yao X H,Luo S N.Improved ductility of Cu64Zr36metallic glass/Cu nanocomposites via phase and grain boundaries[J].Nanotechnology,2016,27(17):175701.
    [83]Jian W R,Wang L,Yao X H,Luo S N.Tensile and nanoindentation deformation of amorphous/crystalline nanolaminates:Effects of layer thickness and interface type[J].Computational Materials Science,2018,154:225-233.
    [84]Zhu T,Li J,Yip S.Atomistic study of dislocation loop emission from a crack tip[J].Physical Review Letters,2004,93(2):025503.
    [85]Zhu T,Li J,Samanta A,Leach A,Gall K.Temperature and strain-rate dependence of surface dislocation nucleation[J].Physical Review Letters,2008,100(2):025502.
    [86]Li Q J,Xu B,Hara S,Li J,Ma E.Sample-size-dependent surface dislocation nucleation in nanoscale crystals[J].Acta Materialia,2018,145:19-29.
    [87]Qin Q Q,Yin S,Cheng G M,Li X Y,Chang T H,Richter G,Zhu Y,Gao H J.Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction[J].Nature Communications,2015,6:5983.
    [88]Cheng G M,Yin S,Chang T H,Richter G,Gao HJ,Zhu Y.Anomalous tensile detwinning in twinned nanowires[J].Physical Review Letters,2017,19(25):256101.
    [89]Zhang X,Li X Y,Gao H J.Size and strain rate effects in tensile strength of penta-twinned Ag nanowires[J].Acta Mechanica Sinica,2017,33(4):792-800.
    [90]Wei Y J,Peng S Y.The stress-velocity relationship of twinning partial dislocations and the phonon-based physical interpretation[J].Science China-Physics Mechanics&Astronomy,2017,60(11):114611.
    [91]Guo Y F,Wang C Y,Wang Y S.The effect of stacking faults or twin formation on crack propagation in bcc iron[J].Philosophical Magazine Letters,2004,84(12):763-770.
    [92]Guo Y F,Wang Y S,Zhao D L.Atomistic simulation of stress-induced phase transformation and recrystallization at the crack tip in bcc iron[J].Acta Materialia,2007,55(1):401-407.
    [93]Guo Y F,Xu S,Tang X Z,Wang Y S,Yip S.Twinnability of hcp metals at the nanoscale[J].Journal of Applied Physics,2014,115(22):224902.
    [94]Tang X Z,Zu Q,Guo Y F.The surface nucleation of tension twin via pure-shuffle mechanism:The energy landscape sampling and dynamic simulations[J].Journal of Applied Physics,2018,123(20):205112.
    [95]Wu Z X,Zhang Y W,Jhon M H,Gao H J,Srolovitz D J.Nanowire failure:long=brittle and short=ductile[J].Nano Letters,2012,12(2):910-914.
    [96]Li S Z,Ding X D,Li J,Ren X B,Sun J,Ma E.High-efficiency mechanical energy storage and retrieval using interfaces in nanowires[J].Nano Letters,2010,10(5):1774-1779.
    [97]Deng C,Sansoz F.Near-ideal strength in gold nanowires achieved through microstructural design[J].Acs Nano,2009,3(10):3001-3008.
    [98]Wang J W,Sansoz F,Huang J Y,Liu Y,Sun S H,Zhang Z,Mao S X.Near-ideal theoretical strength in gold nanowires containing angstrom scale twins[J].Nature Communications,2013,4:1742.
    [99]Wang J W,Sansoz F,Deng C,Xu G,Han G R,Mao S X.Strong hall-petch type behavior in the elastic strain limit of nanotwinned gold nanowires[J].Nano Letters,2015,15(6):3865-3870.
    [100]Lu Q H,You Z S,Huang X X,Hansen N,Lu L.Dependence of dislocation structure on orientation and slip systems in highly oriented nanotwinned Cu[J].Acta Materialia,2017,127:85-97.
    [101]Li W B,Yuan F P,Wu X L.Atomistic tensile deformation mechanisms of Fe with gradient nanograined structure[J].Aip Advances,2015,5(8):087120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700