用户名: 密码: 验证码:
藏北高原那曲地区不同下垫面地表粗糙度的变化特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variations of Surface Roughness on Different Underlying Surface at Nagqu Area over the Qinghai-Tibetan Plateau
  • 作者:刘啸然 ; 李茂善 ; 胡文斌
  • 英文作者:LIU Xiaoran;LI Maoshan;HU Wenbin;School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change,Chengdu University of Information Technology;Unit No.96751 of PLA;
  • 关键词:藏北高原 ; 地表粗糙度 ; 归一化植被指数 ; MODIS
  • 英文关键词:Northern Qinghai-Tibetan Plateau;;surface roughness;;NDVI;;MODIS
  • 中文刊名:高原气象
  • 英文刊名:Plateau Meteorology
  • 机构:成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室/气候与环境变化联合实验室;中国人民解放军96751部队;
  • 出版日期:2019-04-28
  • 出版单位:高原气象
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(41675106);; 国家重点研发计划项目(2017YFC1505702);; 成都信息工程大学项目(KYTZ201721)
  • 语种:中文;
  • 页:204-214
  • 页数:11
  • CN:62-1061/P
  • ISSN:1000-0534
  • 分类号:P404
摘要
利用2008年、2010年和2012年藏北高原那曲地区MODIS卫星数据和站点大气湍流观测数据,分别应用Massman反演模型和一种确定地表粗糙度的独立方法,计算并分析地表粗糙度的时空变化特征并对反演模型进行验证,分析Z0m存在着明显的季节性变化特征。2—8月伴随冰雪消融与植被生长,Z0m逐渐增大,站点Z0m最大可达4~5 cm。9月至次年2月由于高原季风的衰退期等原因,Z0m逐渐减小,站点Z0m减小至1~2 cm。异常年份的降雪是Z0m明显低于常年的主要原因。依据Z0m的由小到大可以将下垫面分为冰雪类、稀疏草地类、茂盛草地类、城镇类4类,其中茂盛草地类和稀疏草地类分别占区域62. 49%和33. 74%,为主要类别,其Z0m年变化分别在2~6 cm和1~4 cm之间。两种计算方法得出的结论相关性较好,由于平均滑动作用,反演资料较实测计算结果偏小。整体而言,利用卫星数据反演算法计算的Z0m是可行的,并可应用于改进陆面模式参数,提高模式模拟的准确性,能更好的揭示区域的热通量交换。
        Using the MODIS satellite data and three site turbulent data of the Nagqu region in northern QinghaiTibetan plateau in 2008,2010 and 2012,with the Massman inversion model and an independent method to determine aerodynamic surface roughness,calculate and analyze the dynamic change laws of aerodynamic roughness length and verify the inversion model. The results showthat the aerodynamic roughness length has a dynamic monthly change. From February to August,Z0 mincreases constantly with the ablation of snowand vegetation growth,and the maximum value of sites reaches 4 ~ 5 cm. From September to February,due to the post-monsoon over the plateau,Z0 mgradually decreased,and the values decreased to about 1 ~ 2 cm. Snowfall is the main reason why Z0 mduring this period is significantly lower than normal. The underlying surface can be divided into four categories according to the different values of Z0 m: ice and snow,sparse grassland,lush grassland,and urban.Among them,sparse grassland and lush grassland account for 62. 49% and 33. 74% of underlying surface of the region respectively,and they are the main categories,whose Z0 mfluctuate between 2 ~ 6 cm and 1 ~ 4 cm. The results obtained by the two calculation methods are positively related to each other. Due to the average sliding effect,the inversion results are smaller than the site calculation results. Overall,the way of calculating Z0 musing satellite data in an inversion method is feasible and can be applied to improve the land surface model parameters,the accuracy of the model simulation,and better reveal the heat flux exchange.
引文
Arino O,Ramos J,Kalogirou V,et al,2010.“Glob Cover 2009”[R].Edinburgh,UK:Proceedings of the living planet Symposium.
    Chen X L,Su Z B,M a Y M,et al,2013.An improvement of roughness height parameterization of the Surface Energy Balance System(SEBS)over the Tibetan Plateau[J].Journal of Applied Meteorology and Climatology,52(3):607-622.DOI:10.1175/JAM C-D-12-056.1.
    Guan X D,Huang J P,Guo N,et al,2009.Variability of soil moisture and its relationship w ith surface albedo and soil thermal parameters over the Loess Plateau[J].Advances in Atmospheric Sciences,26(4):692-700.DOI:10.1007/s00376-009-8198-0.
    Irannejad P,Shao Y P,1998.Description and validation of the atmosphere-land-surface interaction scheme(ALSIS)w ith HAPEX and Cabauw data[J].Global Planet Change,19(1):87-114.DOI:10.1016/S0921-8181(98)00043-5.
    Jane Q,2008.The third pole[J].Nature,454(24):393-396.DOI:10.1038/454393a.
    M a Y M,Tsukamoto O,Wang J M,et al,2002.Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau[J].Progress in Natural Science,12(1):36-40.DOI:10.1016/S0079-6425(01)00007-X.
    M assman W J,1997.An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure[J].Boundary-Layer M eteorology,83(3):407-421.DOI:10.1023/A:1000234813011.
    M assman W J,Weil J C,1999.An analytical one-dimensional secondorder closure model of turbulence statistics and the Lagrangian time scale w ithin and above plant canopies of arbitrary structure[J].Boundary-Layer M eteorology,91(1):81-107.DOI:10.1023/a:1001810204560.
    M onin A S,Obukhov A M,1954.Basic law s of turbulent mixing in the atmosphere near the ground[J].Tr Akad Nauk SSSR Geofiz Inst,24(15):163-187.
    Panosky H A,Dutton J A,1984.Atmospheric Turbulence:M odels and M ethods for Engineering Applications[M].New York:John Wiley,1-399.
    Shao Y P,2000.Phtsics and M odeling of Wind Erosion[M].London:Kluw er Academic Publishers,1-452.
    Stull B R,1991.边界层气象学导论[M].北京:气象出版社,1-737.
    Tao S Y,Chen,L S,Xu X D,et al,1998.Progresses of the Theoretical Study in the Second Tibetan Plateau Experiment of Atmospheric Sciences(Part I)[M].Beijing:China M eteorological Press,1-348.
    Wu G X,Zhang Y S,1998.Tibetan Plateau forcing and timing of the M on-soon onset over south Asia and the south China sea[J].M onthly Weather Review,4(126):913-927.DOI:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.
    Xun X Y,Hu Z Y,M a Y M,2012.The dynamic plateau mon-soon index and its association w ith general circulation an omaliesming[J].Advances in Atmospheric Sciences,29(6):1249-1263.DOI:10.1007/s00376-012-1125-9.
    Ye D Z,Wu G X,1998.The role of heat source of the Tibetan Plateau in the general circulation[J].M eteorological and Atmospheric Physics,67(1):181-198.DOI:10.1007/bf01277509.
    陈家宜,王介民,光田宁,1993.一种确定地表粗糙度的独立方法[J].大气科学,17(01):21-26.DOI:10.3878/j.issn.1006-9895.1993.01.03.
    除多,Basabta S,王伟,等,2010.基于MODIS的西藏高原土地覆盖分类研究[J].资源科学,32(11):2152-2159.
    樊威伟,马伟强,郑艳,等,2018.青藏高原地面加热场年际变化特征及其与西风急流关系研究[J].高原气象,37(3):591-601.DOI:10.7522/j.issn.1000-0534.2017.00062.
    贾立,王介民,胡泽勇,2000.干旱区热力学粗糙度特征及对感热通量估算的影响[J].高原气象,19(4):495-503.DOI:10.3321/j.issn.1000-0534.2000.04.011.
    李凡,李森,陈同庆,2004.西藏那曲藏北草地观光畜牧业发展的探讨---以才曲塘草地畜牧业科技示范区为例[J].四川草原,109(12):38-42.DOI:10.3969/j.issn.1673-8403.2004.12.015.
    李家伦,洪钟祥,孙菽芬,2000.青藏高原西部改则地区大气边界层特征[J].大气科学,24(3):301-312.DOI:10.3878/j.issn.1006-9895.2000.03.02.
    李林,陈晓光,王振宇,等,2010.青藏高原区域气候变化及其差异性研究[J].气候变化研究进展,6(3):181-186.DOI:10.3969/j.issn.1673-1719.2010.03.005.
    刘静,卓慕宁,胡耀国,2007.初论地表粗糙度[J].生态环境,16(6):1829-1836.DOI:10.3969/j.issn.1674-5906.2007.06.047.
    马耀明,塚本修,王介民,等,2001.青藏高原草甸下垫面上的动力学和热力学参数分析[J].自然科学进展,11(8):42-46.DOI:10.3321/j.issn.1002-008X.2001.08.006.
    马耀明,姚檀栋,王介民,等,2006.青藏高原复杂地表能量通量研究[J].地球科学进展,21(12):1215-1223.DOI:10.3321/j.issn.1001-8166.2006.12.002.
    苏炳凯,赵鸣,任军芳,1999.标量粗糙度对地气交换的影响[J].大气科学,23(3):349-358.DOI:10.3878/j.issn.1006-9895.1999.03.11.
    孙根厚,2016.藏北地区高寒草地地表通量的尺度扩展分析[D].兰州:中国科学院寒区旱区环境与工程研究所,1-134.
    王介民,1999.陆面过程实验和地气相互作用研究---从HEIFE到IM GRASS和GAM E-Tibet/TIPEX[J].高原气象,18(3):280-294.
    吴国雄,刘屹岷,刘新,等,2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学,29(1):47-56.
    吴国雄,毛江玉,段安民,等,2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报,62(5):528-540.DOI:10.3321/j.issn.0577-6619.2004.05.002.
    吴国雄,张永生,1999.青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅱ.爆发时间[J].大气科学,23(1):52-62.DOI:10.3878/j.issn.1006-9895.1999.01.07.
    吴晓鸣,马伟强,马耀明,2013.夏季藏北高原地表热通量特征观测与模拟[J].高原气象,32(5):1246-1252.DOI:10.7522/j.issn.1000-0534.2013.00082.
    谢琰,文军,刘蓉,等,2018.太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究[J].高原气象,37(3):614-625.DOI:10.7522/j.issn.1000-0534.2017.00063.
    谢志鹏,胡泽勇,刘火霖,等,2017.陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象,36(1):1-12.DOI:10.7522/j.issn.1000-0534.2016.00012.
    严晓强,胡泽勇,孙根厚,等,2018.那曲高寒草地上四种地表通量计算方法的对比[J].高原气象,37(2):358-370.DOI:10.7522/j.issn.1000-0534.2017.00067.
    杨丽薇,高哓清,惠小英,等,2017.青藏高原中部聂荣亚寒带半干旱草地近地层湍流特征研究[J].高原气象,36(4):875-885.DOI:10.7522/j.issn.1000-0534.2016.00089.
    杨梅学,姚檀栋,1998.青藏高原雪盖对亚洲季风影响研究进展[J].冰川冻土,20(2):90-95.DOI:10.1088/0256-307X/16/9/027.
    杨耀先,李茂善,胡泽勇,等,2014.藏北高原高寒草甸地表粗糙度对地气通量的影响[J].高原气象,33(3):626-636.DOI:10.7522/j.issn.1000-0534.2013.00199.
    张强,吕世华,2003.城市表面粗糙度长度的确定[J].高原气象,22(1):24-32.
    张永生,吴国雄,1998.关于亚洲夏季风爆发及北半球季节突变的物理机理的诊断分析:I季风爆发的阶段性特征[J].气象学报,56(5):2-17.DOI:10.11676/qxxb19980.47.
    周秀骥,赵平,陈军明,等,2009.青藏高原热力作用对北半球气候影响的研究[J].中国科学(D辑:地球科学),39(11):1473-1486.
    周扬,徐维新,白爱娟,等,2017.青藏高原沱沱河地区动态融雪过程及其与气温关系分析[J].高原气象,36(1):24-32.DOI:10.7522/j.issn.1000-0534.2016.00013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700