用户名: 密码: 验证码:
中国西北部干旱区NPP驱动力分析——以新疆伊犁河谷和天山山脉部分区域为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of NPP driving force in an arid region of Northwest China:A case study in Yili Valley and parts of Tianshan Mountains, Xinjiang, China
  • 作者:姬盼盼 ; 高敏华 ; 杨晓东
  • 英文作者:JI Panpan;GAO Minhua;YANG Xiaodong;Institute of Resource and Environment Science, Xinjiang University;Key Laboratory Oasis Ecology;Key Laboratory of Intelligent Urban and Environmental Modeling,Autonomous Region;
  • 关键词:干旱区 ; 净初级生产力(NPP) ; 海拔 ; 因子贡献率 ; 驱动力
  • 英文关键词:arid area;;Net primary productivity(NPP);;altitude;;factor contribution rate;;driving force
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:新疆大学资源与环境科学学院;绿洲生态教育部重点实验室;自治区智慧城市与环境建模重点实验室;
  • 出版日期:2019-01-18 09:23
  • 出版单位:生态学报
  • 年:2019
  • 期:08
  • 基金:国家自然科学基金项目(31500343)
  • 语种:中文;
  • 页:355-366
  • 页数:12
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:Q14;Q948
摘要
NPP作为全球生态系统稳定与生态安全评估的重要参数之一,它的分布变化能间接反映区域生态平衡和自然环境演变。以新疆伊犁河谷和天山山脉部分区域为研究区,为探寻该区域NPP驱动因子及其驱动特点,对NPP、气候气象、土壤、植物和海拔数据做再处理与数理统计分析,研究发现:(1)该中纬度干旱区NPP的主导因素为水分与海拔。(2)相关性分析得出,年平均气温、年平均降水量、干燥度、湿润指数、高程和坡度与NPP有显著相关性(P<0.01)。(3)不同环境温度下,各环境因子对NPP的驱动能力有差异,年均气温在0℃以下区域NPP最强驱动因子为海拔(P<0.01),而高于0℃区域则为水分因子(P<0.01)。(4)不同植被类型与土壤类型间NPP主要驱动因子及贡献率存在较大差异。(5)NPP极值随海拔的升高先增大后减小,海拔高度对NPP环境因子驱动能力起决定性作用。揭示了海拔因素对我国中纬度干旱区NPP的重要影响,揭示了各环境条件下气候与地形因子对NPP的影响特点,为干旱区NPP驱动力研究提供相关理论依据。
        Net primary productivity(NPP) is one of the important parameters for assessing global ecosystem stability and ecological safety, and changes to NPP distribution directly affect regional ecological function and natural environment evolution. Our study area forms part of the Yili River Valley and Tianshan Mountains in Xinjiang, China. Through analysis of mathematical statistics datasets composed of NPP, climate and meteorology, soil, and plant and elevation we found that:(1) the dominant factors for NPP in arid areas of middle latitude were moisture and elevation;(2) correlation analysis indicated that the annual average temperature, annual average precipitation, aridity, humidity index, elevation, and slope showed significant correlation with NPP(P<0.01) and, additionally, there were some correlations among the environmental factors;(3) under different environmental temperatures, the effect of the driving ability of the environmental factors on NPP was different: when the average annual temperature was below 0 °C, NPP was driven by elevation(P<0.01); when it was above 0 °C, NPP was driven by moisture factors(P<0.01);(4) there were significant differences in NPP driving factors between different vegetation and soil types;(5) the NPP value first increased, and then decreased with rising altitude, and altitude had a decisive effect on the driving characteristics of NPP environmental factors. Based on the above conclusions, we revealed the important influence of altitude and the effects of environmental factors on NPP in arid areas of mid-latitudes. Furthermore, the effects of the driving force of altitude on NPP needs further exploration.
引文
[1] Lieth H,Whittaker R H.Primary Productivity of the Biosphere.New York:Springer,1975.
    [2] Horion S,Cornet Y,Erpicum M,Tychon B.Studying interactions between climate variability and vegetation dynamic using a phenology based approach.International Journal of Applied Earth Observation and Geoinformation,2013,20:20- 32.
    [3] Brouwers N C,Mercer J,Lyons T,Poot P,Veneklaas E,Hardy G.Climate and landscape drivers of tree decline in a Mediterranean ecoregion.Ecology and Evolution,2013,3(1):67- 79.
    [4] Wang S Y,Zhang B,Yang Q C,Chen G S,Yang B J,Lu L L,Shen M,Peng Y Y.Responses of net primary productivity to phenological dynamics in the Tibetan Plateau,China.Agricultural and Forest Meteorology,2017,232:235- 246.
    [5] 张芳,熊黑钢,冯娟,许仲林.基于遥感的新疆人工绿洲扩张中植被净初级生产力动态变化.农业工程学报,2017,33(12):194- 200.
    [6] 李传华,赵军.2000—2010年石羊河流域NPP时空变化及驱动因子.生态学杂志,2013,32(3):712- 718.
    [7] Sun R,Zhu Q J.Estimation of net primary productivity in China using remote sensing data.Journal of Geographical Sciences,2001,11(1):14- 23.
    [8] Brouwers N C,Coops N C.Decreasing Net Primary Production in forest and shrub vegetation across Southwest Australia.Ecological Indicators,2016,66:10- 19.
    [9] Tum M,Zeidler J N,Günther K P,Esch T.Global NPP and straw bioenergy trends for 2000- 2014.Biomass and Bioenergy,2016,90:230- 236.
    [10] Gang C C,Zhang Y Z,Wang Z Q,Chen Y Z,Yang Y,Li J L,Cheng J M,Qi J G,Odeh I.Modeling the dynamics of distribution,extent,and NPP of global terrestrial ecosystems in response to future climate change.Global and Planetary Change,2017,148:153- 165.
    [11] 焦伟,陈亚宁,李稚.西北干旱区植被净初级生产力的遥感估算及时空差异原因.生态学杂志,2017,36(1):181- 189.
    [12] 施红霞,王澄海.21世纪北半球中高纬度净初级生产力(NPP)变化及其与气候因子之间的关系.冰川冻土,2015,37(2):327- 335.
    [13] 王强,张廷斌,易桂花,陈田田,别小娟,何奕萱.横断山区2004- 2014年植被NPP时空变化及其驱动因子.生态学报,2017,37(9):3084- 3095.
    [14] 赵志平,吴晓莆,李果,李俊生.2009- 2011年我国西南地区旱灾程度及其对植被净初级生产力的影响.生态学报,2015,35(2):350- 360.
    [15] Eisfelder C,Klein I,Bekkuliyeva A,Kuenzer C,Buchroithner M F,Dech S.Above-ground biomass estimation based on NPP time-series -a novel approach for biomass estimation in semi-arid Kazakhstan.Ecological Indicators,2017,72:13- 22.
    [16] Lu D S.The potential and challenge of remote sensing-based biomass estimation.International Journal of Remote Sensing,2006,27(7):1297- 1328.
    [17] Liang T G,Feng Q S,Cao J J,Xie H J,Lin H L,Zhao J,Ren J Z.Changes in global potential vegetation distributions from 1911 to 2000 as simulated by the comprehensive sequential classification system approach.Chinese Science Bulletin,2012,57(11):1298- 1310.
    [18] 杨会巾,刘丽娟,马金龙,王进,李小玉.基于Landsat 8遥感影像反演干旱区净初级生产力的尺度效应.生态学杂志,2016,35(5):1294- 1300.
    [19] 陈晓玲,曾永年.亚热带山地丘陵区植被NPP时空变化及其与气候因子的关系——以湖南省为例.地理学报,2016,71(1):35- 48.
    [20] Zhang G G,Kang Y M,Han G D,Sakurai K.Effect of climate change over the past half century on the distribution,extent and NPP of ecosystems of Inner Mongolia.Global Change Biology,2011,17(1):377- 389.
    [21] 吴艳艳.城市化过程广州土地覆盖变化对净初级生产力格局的影响[D].广州:中山大学,2016.
    [22] 刘夏.气候变化对三江平原沼泽湿地NPP的影响研究[D].长春:中国科学院研究生院(东北地理与农业生态研究所),2016.
    [23] 侯英雨,柳钦火,延昊,田国良.我国陆地植被净初级生产力变化规律及其对气候的响应.应用生态学报,2007,18(7):1546- 1553.
    [24] 刚成诚,王钊齐,杨悦,陈奕兆,张艳珍,李建龙,程积民.近百年全球草地生态系统净初级生产力时空动态对气候变化的响应.草业学报,2016,25(11):1- 14.
    [25] 朱文泉,陈云浩,徐丹,李京.陆地植被净初级生产力计算模型研究进展.生态学杂志,2005,24(3):296- 300.
    [26] 张静,任志远.汉江流域植被净初级生产力时空格局及成因.生态学报,2016,36(23):7667- 7677.
    [27] 孔冬冬,张强,黄文琳,顾西辉.1982- 2013年青藏高原植被物候变化及气象因素影响.地理学报,2017,72(1):39- 52.
    [28] 段金龙,张学雷.区域地表水体、归一化植被指数与热环境多样性格局的关联分析.应用生态学报,2012,23(10):2812- 2820.
    [29] 智海,丹利,俞永强,徐永福,王盘兴.东亚地区陆地植被净初级生产力与夏季气候的模拟.气象学报,2009,67(6):1032- 1044.
    [30] 蒋冲,王文丽,陈爱芳,李建国,王飞,穆兴民,李锐.近52年渭河流域气候变化对植被净第一性生产力的影响.中国沙漠,2013,33(3):952- 957.
    [31] Zhang M L,Lal R,Zhao Y Y,Jiang W L,Chen Q G.Estimating net primary production of natural grassland and its spatio-temporal distribution in China.Science of the Total Environment,2016,553:184- 195.
    [32] Sun C M,Zhong X C,Chen C,Gu T,Chen W.Evaluating the grassland net primary productivity of southern China from 2000 to 2011 using a new climate productivity model.Journal of Integrative Agriculture,2016,15(7):1638- 1644.
    [33] 徐继填,陈百明,张雪芹.中国生态系统生产力区划.地理学报,2001,56(4):401- 408.
    [34] 张向茹,程曼,祝飞华,安韶山.宁南山区半干旱草原典型植物立枯物的碳矿化特征.草地学报,2014,22(2):277- 282.
    [35] 赵蓉,李小军,赵洋,杨昊天.固沙植被区土壤呼吸对反复干湿交替的响应.生态学报,2015,35(20):6720- 6727.
    [36] Yang Y,Wang Z Q,Li J L,Gang C C,Zhang Y Z,Zhang Y,Odeh I,Qi J G.Comparative assessment of grassland degradation dynamics in response to climate variation and human activities in China,Mongolia,Pakistan and Uzbekistan from 2000 to 2013.Journal of Arid Environments,2016,135:164- 172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700