用户名: 密码: 验证码:
某区生活垃圾焚烧发电厂周边及厂区内土壤中重金属元素的污染特征及评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pollution Characteristics and Evaluation of Heavy Metal Pollution in Surface Soil Around a Municipal Solid Waste Incineration Power Plant
  • 作者:吕占禄 ; 张金良 ; 陆少游 ; 邹天森 ; 刘凯 ; 张晗 ; 谷亚亚
  • 英文作者:Lü Zhan-lu;ZHANG Jin-liang;LU Shao-you;ZOU Tian-sen;LIU Kai;ZHANG Han;GU Ya-ya;Chinese Research Academy of Environmental Sciences;Shenzhen Center for Disease Control and Prevention;
  • 关键词:生活垃圾焚烧发电厂 ; 表层土壤 ; 重金属元素 ; 污染特征 ; 潜在生态风险评价 ;
  • 英文关键词:municipal solid waste incineration power plant;;surface soil;;heavy metal;;pollution characteristics;;potential ecological risk;;mercury
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:中国环境科学研究院;深圳市疾病预防控制中心;
  • 出版日期:2018-12-20 07:04
  • 出版单位:环境科学
  • 年:2019
  • 期:05
  • 语种:中文;
  • 页:487-496
  • 页数:10
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X53
摘要
为了解与评价生活垃圾焚烧电厂周边土壤重金属元素的污染状况,按照点源扇形布点原则,在生活垃圾焚烧电厂周边和厂区内布点采样,以远离电厂区域为对照点,共采集29个土壤样品,分析检测了Cr、Mn、Ni、Cu、Zn、As、Ag、Cd、Hg和Pb等10种重金属元素的含量.结果显示,生活垃圾焚烧发电厂周边和厂区内土壤中各重金属元素的含量水平均满足国家《土壤环境质量》(GB 15618-2018)和(GB 36600-2018)中土壤污染风险筛选值要求;仅有Mn、Cu和As的平均含量高于安徽省土壤平均背景值,其中As是背景值的1. 03倍,Cu是1. 07倍;与对照点对比,Cr、Ni、Cd、Cu和As含量低于对照点,差异有统计学意义(P≤0. 05).电厂周边土壤中Hg在空间分布上的差异较明显,其余重金属元素空间分布差异不明显、呈现较均匀,在常年主导下风向和次主导下风向500 m土壤中最高,之后随着距电厂的距离增大而逐渐下降,最后低于对照点的水平.电厂周边和厂区内土壤中各重金属元素的污染程度为轻度污染,内梅罗综合污染指数(PI)为1. 1~1. 2,对照点也为轻度污染(PI为1. 5);潜在生态风险为轻微,多种重金属元素的综合潜在生态风险指数(RI)为60. 2~67. 7,Hg和As对RI的贡献率较大,对照点为中等生态危害(RI为116. 8).基于主成分分析的结果,综合考虑土壤中各重金属元素的含量和空间分布特征以及相关性分析和聚类分析结果,将10种重金属元素分为3类:①Ni、Cr、As和Mn;②Cu、Zn、Ag、Cd和Pb;③Hg.其中Ni、Cr、As和Mn来源主要受土壤母质影响; Cu、Zn、Ag、Cd和Pb来源主要受土壤母质和多种人类活动共同影响; Hg则很可能源于生活垃圾焚烧烟气的扩散沉降及其在土壤中的累积.在研究表明,生活垃圾焚烧发电厂周边和厂区内表层土壤中Hg具有独特的环境污染特征,在生活垃圾焚烧发电厂周边的土壤重金属污染调查中,Hg污染应受到重点关注.
        To investigate and evaluate the pollution levels of heavy metals in the soil around a large Municipal Solid Waste Incineration power plant( MSWIPP),a total of 29 soil samples were collected around the MSWIPP and away from the power plant area. The contents of 10 selected heavy metals( Cr,Mn,Ni,Cu,Zn,As,Ag,Cd,Hg,and Pb) were analyzed. The results showed that the content of each heavy metal element did not exceed the values for Soil Environmental Quality of Risk Control Standard for Soil Contamination of Agricultural Land( GB15618-2018) and Development Land( GB 36600-2018). The mean contents of Mn,Cu,and As were higher than their respective background values of Anhui Province,where As was 1. 03 times the background value,and Cu was1. 07 times. Compared with the control points,the contents of Cr,Ni,Cd,Cu,and As were lower than the control points,and the difference was statistically significant( P≤0. 05). The spatial distribution of Hg was more obvious in the soil around the power plant,and other heavy metals were not obvious and uniform. The content of Hg was the highest in the 500 m soil of perennial dominant downwind and sub-dominant downwind. With increasing distance from the power plant,the content gradually decreased and it was lower than the level of the control point. The pollution degree of heavy metal elements in the soil around the power plant and in the plant area was mild. The Nemero comprehensive pollution index( PI) was 1. 1-1. 2,and the control point had also mild pollution( PI was 1. 5). The potential ecological risk was slight,and the comprehensive potential ecological risk index( RI) of various heavy metal elements was 60. 2-67. 7. The contribution rate of Hg and As to RI were large,and the control point had medium ecological risk( RI was 116. 8). Based on the results of principal component analysis,accompanied with the content,spatial distribution characteristics,Pearson's correlation,and hierarchical cluster analysis results,three groups of heavy metals with different spatial distribution were identified: ①Ni,Cr,As,and Mn originated from lithological sources; ②Cu,Zn,Ag,Cd,and Pb affected by both lithological and human sources( e. g. agricultural and traffic sources); ③Hg likely originated from the diffusion sedimentation of MSWI flue gas and its accumulation in the soil. The above results indicated that the unique pollution characteristics of Hg deserve serious attention in pollution monitoring in soils surrounding solid waste incinerator.
引文
[1]Zhao X G,Jiang G W,Li A,et al.Technology,cost,a performance of waste-to-energy incineration industry in China[J].Renewable and Sustainable Energy Reviews,2016,55:115-130.
    [2]Hong J L,Chen Y L,Wang M,et al.Intensification of municipal solid waste disposal in China[J].Renewable and Sustainable Energy Reviews,2017,69:168-176.
    [3]Lombardi L,Carnevale E,Corti N A.A review of technologies and performances of thermal treatment systems for energy recovery from waste[J].Waste Management,2015,37:26-44.
    [4]Marchi M,Pulselli F M,Mangiavacchi S,et al.The greenhouse gas inventory as a tool for planning integrated waste management systems:a case study in central Italy[J].Journal of Cleaner Production,2017,142:351-359.
    [5]Rajaeifar M A,Ghanavati H,Dashti B B,et al.Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies:Acomparative review[J].Renewable and Sustainable Energy Reviews,2017,79:414-439.
    [6]Wang Y Q,Zhang X H,Liao W J,et al.Investigating impact of waste reuse on the sustainability of municipal solid waste(MSW)incineration industry using emergy approach:A case study from Sichuan province,China[J].Waste Management,2018,77:252-267.
    [7]Li T,Wan Y,Ben Y J,et al.Relative importance of different exposure routes of heavy metals for humans living near a municipal solid waste incinerator[J].Environmental Pollution,2017,226:385-393.
    [8]Zhang H,He P J,Shao L M.Flow analysis of heavy metals in MSW incinerators for investigating contamination of hazardous components[J].Environmental Science&Technology,2008,42(16):6211-6217.
    [9]Deng C Y,Xie H,Ye X J,et al.Mercury risk assessment combining internal and external exposure methods for a population living near a municipal solid waste incinerator[J].Environmental Pollution,2016,219:1060-1068.
    [10]Tepanosyan G,Maghakyan N,Sahakyan L,et al.Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils[J].Ecotoxicology and Environmental Safety,2017,142:257-265.
    [11]Rovira J,Vilavert L,Nadal M,et al.Temporal trends in the levels of metals,PCDD/Fs and PCBs in the vicinity of a municipal solid waste incinerator.Preliminary assessment of human health risks[J].Waste Management,2015,43:168-175.
    [12]Bretzel F C,Calderisi M.Contribution of a municipal solid waste incinerator to the trace metals in the surrounding soil[J].Environmental Monitoring and Assessment,2011,182(1-4):523-533.
    [13]钟山,高慧,张漓衫,等.平原典型垃圾焚烧厂周边土壤重金属分布特征及污染评价[J].生态环境学报,2014,23(1):164-169.Zhang S,Gao H,Zhang L S,et al.Spatial distribution and pollution evaluation of heavy metal in soils surrounding a typical municipal solid waste incineration plant[J].Ecology and Environmental Sciences,2014,23(1):164-169.
    [14]Morselli L,Bartoli M,Brusori B,et al.Application of an integrated environmental monitoring system to an incineration plant[J].Science of the Total Environment,2002,289(1-3):177-188.
    [15]赵曦,黄艺,李娟,等.大型垃圾焚烧厂周边土壤重金属含量水平、空间分布、来源及潜在生态风险评价[J].生态环境学报,2015,24(6):1013-1021.Zhao X,Huang Y,Li J,et al.Environmental levels,spatial distribution,sources and potential ecological risk of heavy metals in soils surrounding a large solid waste incinerator[J].Ecology and Environmental Sciences,2015,24(6):1013-1021.
    [16]Rimmer D L,Vizard C G,Pless-Mulloli T,et al.Metal contamination of urban soils in the vicinity of a municipal waste incinerator:one source among many[J].Science of the Total Environment,2006,356(1-2):207-216.
    [17]Nadal M,Bocio A,Schuhmacher M,et al.Trends in the levels of metals in soils and vegetation samples collected near a hazardous waste incinerator[J].Archives of Environmental Contamination and Toxicology,2005,49(3):290-298.
    [18]Llobet J M,Schuhmacher M,Domingo J L.Spatial distribution and temporal variation of metals in the vicinity of a municipal solid waste incinerator after a modernization of the flue gas cleaning systems of the facility[J].Science of the Total Environment,2002,284(1-3):205-214.
    [19]王俊坚,赵宏伟,钟秀萍,等.垃圾焚烧厂周边土壤重金属浓度水平及空间分布[J].环境科学,2011,32(1):298-304.Wang J J,Zhao H W,Zhong X P,et al.Concentration levels and spatial distribution of heavy metals in soil surrounding a municipal solid waste incineration plant(Shenzhen)[J].Environmental Science,2011,32(1):298-304.
    [20]Brady J P,Ayoko G A,Martens W N,et al.Development of a hybrid pollution index for heavy metals in marine and estuarine sediments[J].Environmental Monitoring and Assessment,2015,187(5):306.
    [21]徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.Xu Z Q,Ni S J,Tuo X G et al.Calculation of heavy metals'toxicity coefficient in the evaluation of potential ecological risk index[J].Environmental Science&Technology,2008,31(2):112-115.
    [22]Ogunkunle C O,Fatoba P O.Pollution loads and the ecological risk assessment of soil heavy metals around a mega cement factory in southwest Nigeria[J].Polish Journal of Environmental Studies,2013,22(2):487-493.
    [23]Hakanson L.An ecological risk index for aquatic pollution control.a sedimentological approach[J].Water Research,1980,14(8):975-1001.
    [24]范明毅,杨皓,黄先飞,等.典型山区燃煤型电厂周边土壤重金属形态特征及污染评价[J].中国环境科学,2016,36(8):2425-2436.Fan M Y,Yang H,Huang X F,et al.Chemical forms and risk assessment of heavy metals in soils around a typical coal-fired power plant located in the mountainous area[J].China Environmental Science,2016,36(8):2425-2436.
    [25]Zhang L,Wang S X,Wang L,et al.Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China[J].Environmental Science&Technology,2015,49(5):3185-3194.
    [26]Meneses M,Llobet J M,Granero S,et al.Monitoring metals in the vicinity of a municipal waste incinerator:temporal variation in soils and vegetation[J].Science of the Total Environment,1999,226(2-3):157-164.
    [27]Li N,Kang Y,Pan W J,et al.Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a wasteincinerator site,South China[J].Science of the Total Environment,2015,15(7):144-151.
    [28]汤庆合,丁振华,江家骅,等.大型垃圾焚烧厂周边环境汞影响的初步调查[J].环境科学,2005,26(1):196-199.Tang Q H,Ding Z H,Jiang J H,et al.Environmental effects of mercury around a large scale MSW incineration plant[J].Environmental Science,2005,26(1):196-199.
    [29]Li Y,Zhang H,Shao L M,et al.Impact of municipal solid waste incineration on heavy metals in the surrounding soils by multivariate analysis and lead isotope analysis[J].Journal of Environmental Science,2019,20(2):1-10.
    [30]冯经昆,钟山,孙立文,等.重庆某垃圾焚烧厂周边土壤重金属污染分布特征及来源解析[J].环境化学,2014,33(6):969-975.Feng J K,Zhong G S,Sun L W,et al.Spatial distribution and source analysis of heavy metal contamination in soil surrounding a municipal solid waste incineration plant in Chongqing[J].Environmental Chemistry,2014,33(6):969-975.
    [31]Li H,Nitivattananon V,Li P.Municipal solid waste management health risk assessment from air emissions for China by applying life cycle analysis[J].Waste Management&Research,2015,33(5):401-409.
    [32]Han Y,Xie H T,Liu W B,et al.Assessment of pollution of potentially harmful elements in soils surrounding a municipal solid waste incinerator,China[J].Frontiers of Environmental Science&Engineering,2016,10(6):129-139.
    [33]Ma W C,Tai L Y,Qiao Z,et al.Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator:A case study in North China[J].Science of the Total Environment,2018,631-632:348-357.
    [34]赵曦,喻本德,张军波.城市生活垃圾焚烧重金属迁移、分布和形态转化研究[J].环境科学导刊,2015,34(3):49-55.Zhao X,Yu B D,Zhang J B.The transfer,distribution,and morphological transformation of heavy metals from the incineration process of municipal solid waste[J].Environmental Science Survey,2015,34(3):49-55.
    [35]Abanades S,Flamant G,Gagnepain B,et al.Fate of heavy metals during municipal solid waste incineration[J].Waste Management&Research,2002,20(1):55-68.
    [36]Lv J S,Liu Y,Zhang Z L,et al.Multivariate geostatistical analyses of heavy metals in soils:Spatial multi-scale variations in Wulian,Eastern China[J].Ecotoxicology and Environmental Safety,2014,107:140-147.
    [37]Lv J S,Liu Y,Zhang Z L,et al.Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils[J].Journal of Hazardous Materials,2013,261:387-397.
    [38]Cai L M,Xu Z C,Ren M Z,et al.Source identification of eight hazardous heavy metals in agricultural soils of Huizhou,Guangdong Province,China[J].Ecotoxicology and Environmental Safety,2012,78:2-8.
    [39]韩玉丽,邱尔发,王亚飞,等.北京市土壤和TSP中重金属分布特征及相关性研究[J].生态环境学报,2015,24(1):146-155.Han Y L,Qiu E F,Wang Y F,et al.Study on heavy metals distribution and correlation in soil and TSP of Beijing[J].Ecology and Environmental Sciences,2015,24(1):146-155.
    [40]Markus J A,Mcbratney A B.Corrigendum-An urban soil study:heavy metals in Glebe,Australia[J].Soil Research,1996,34(3):466.
    [41]郭彦海,孙许超,张士兵,等.上海某生活垃圾焚烧厂周边土壤重金属污染特征、来源分析及潜在生态风险评价[J].环境科学,2017,38(12):5262-5271.Guo Y H,Sun X C,Zhang S B,et al.Pollution characteristics,source analysis and potential ecological risk assessment of heavy metals in soils surrounding a municipal solid waste incineration plant in Shanghai[J].Environmental Science,2017,38(12):5262-5271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700