用户名: 密码: 验证码:
长江源区降水氢氧稳定同位素特征及水汽来源
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Stable Isotopes in Precipitation and Moisture Sources in the Headwaters of the Yangtze River
  • 作者:汪少勇 ; 王巧丽 ; 吴锦奎 ; 何晓波 ; 丁永建 ; 王利辉 ; 胡召富
  • 英文作者:WANG Shao-yong;WANG Qiao-li;WU Jin-kui;HE Xiao-bo;DING Yong-jian;WANG Li-hui;HU Zhao-fu;State Key Laboratory of Cryospheric Sciences,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;Key Laboratory of Ecohydrology of Inland River Basin,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Hydrological Bureau of Yangtze River Water Resources Commission;
  • 关键词:青藏高原 ; 长江源区 ; 大气降水 ; 稳定同位素 ; 水汽来源
  • 英文关键词:Qinghai-Tibet Plateau;;headwaters of the Yangtze River;;precipitation;;stable isotopes;;moisture sources
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室;中国科学院西北生态环境资源研究院内陆河流域生态水文重点实验室;中国科学院大学;长江水利委员会水文局;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:06
  • 基金:国家重点研发计划项目(2017YFC0405704,2017YFC0405706);; 国家自然科学基金重点项目(41730751);; 中央级公益性科研院所基本科研业务费专项(CKSF2017045);; 冰冻圈科学国家重点实验室自主课题项目(SKLCS-ZZ-2018)
  • 语种:中文;
  • 页:125-133
  • 页数:9
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X51
摘要
基于长江源区冬克玛底流域2014年5~10月连续采集的73个降水同位素数据,结合相关气象资料,分析了降水中δD、δ~(18)O及氘盈余(d-excess)变化特征,讨论了δ~(18)O与气温、降水量的关系,利用HYSPLIT模型追踪流域降水的水汽来源并估算不同水汽来源对降水量的贡献比例.结果表明:研究区降水中δ~(18)O和δD变化范围分别为-26.5‰~1.9‰和-195.2‰~34.0‰,且δ~(18)O和δD值随时间变化波动较大,与不同来源水汽输送有直接的关系;区域降水线的斜率和截距均大于全球大气降水线,与青藏高原北侧地区的降水线相近;不同降水类型中的δ~(18)O和δD的关系差异显著,主要与水汽来源和形成降水时的气象条件有关;由于受局地蒸发水汽及水汽输送过程影响,流域大气降水d-excess值整体上相对偏大;研究区的降水同位素存在显著的降水量效应,但不存在温度效应,表明降水量对大气降水中稳定同位素含量的控制作用更强;水汽来源轨迹表明,研究区大气降水水汽来源主要有西南季风携带的海洋性水汽、局地蒸发水汽及西风输送水汽,对降水量的贡献比例分别为43%、36%和21%.该研究结果有助于进一步了解长江源头区冬克玛底流域的大气环流特征及水循环过程.
        Based on the stable isotopes of 73 precipitation samples continuously collected from May to October 2014 and related meteorological statistics in the Dongkemaldi Basin,the characteristics of δD,δ~(18)O,and d-excess of precipitation,as well as the correlations between δ~(18)O and the rainfall amount and air temperature were analyzed. The moisture sources were tracked by the HYSPLIT model to further estimate the contribution of different water vapor sources to the rainfall amount. The results showed that the range of δ~(18)O and δD values varied from -26. 5‰ to 1. 9‰ and -195. 2‰ to 34. 0‰,respectively; meanwhile,the δ~(18)O and δD values in precipitation fluctuated greatly with time in response to water vapor transport from different moisture sources of the QinghaiTibet Plateau. The slope and intercept of the Local Meteoric Water Line(LMWL) were both higher than those of the Global Meteoric Water Line(GMWL) and close to the LMWL in the northern area of the Qinghai-Tibet Plateau. The relationship between δ~(18)O and δD in different precipitation types showed significant differences,which were mainly related to the source of water vapor and meteorological conditions during the process of precipitation formation. Because of the influence of local evaporation and the transport process of water vapor,the d-excess values of atmospheric precipitation were relatively large; the δ~(18)O in precipitation had a significant amount effect,but had no temperature effect,thus indicating that the rainfall amount was more effective in controlling the stable isotope content of atmospheric precipitation than temperature. The modeled trajectory of vapor sources showed that water vapor of precipitation was mainly derived from the marine vapor carried by the southwest monsoon,local moisture,and the westerly water vapor,and their contributions to the rainfall amount were 43%,36%,and 21%,respectively. The results of this study can contribute to further understanding of the atmospheric circulation characteristics and water cycle process of the Dongkemadi basin in the headwaters of the Yangtze River.
引文
[1]唐雁英.水汽源区变化及其对流过程对我国典型东亚季风区降水稳定同位素的影响[D].南京:南京大学,2015. 1-50.Tang Y Y. Effects of changes in moisture source and the upstream rainout on stable isotopes in summer precipitation in the typical East Asian monsoon regions[D]. Nanjing:Nanjing University,2015. 1-50.
    [2]宋春林,孙向阳,王根绪.贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J].长江流域资源与环境,2015,24(11):1860-1869.Song C L,Sun X Y,Wang G X. A study on precipitation stable isotopes characteristics and vapor sources of the subalpine Gongga Mountain,China[J]. Resources and Environment in the Yangtze Basin,2015,24(11):1860-1869.
    [3] Dansgaard W. Stable isotopes in precipitation[J]. Tellus,1964,16(4):436-468.
    [4]刘君,郭华良,刘福亮,等.包头地区大气降水δD和δ18O变化特征浅析[J].干旱区资源与环境,2013,27(5):157-162.Liu J,Guo H L,Liu F L,et al. The variations of stable isotopes(δD andδ18O)in the precipitation in Baotou area[J]. Journal of Arid Land Resources and Environment,2013,27(5):157-162.
    [5]姚檀栋,丁良福,蒲建辰,等.青藏高原唐古拉山地区降雪中δ18O特征及其与水汽来源的关系[J].科学通报,1991,36(20):1570-1573.
    [6]史晓宜,蒲焘,何元庆,等.典型温冰川区湖泊的稳定同位素空间分布特征[J].环境科学,2016,37(5):1685-1691.Shi X Y,Pu T,He Y Q,et al. Spatial distribution of stable isotope from the lakes in typical temperate glacier region[J].Environmental Science,2016,37(5):1685-1691.
    [7]章新平,姚檀栋.青藏高原东北地区现代降水中δD与δ18O的关系研究[J].冰川冻土,1996,18(4):360-365.Zhang X P, Yao T D. Relations betweenδD andδ18O in precipitation at present in the northeast Tibetan Plateau[J].Journal of Glaciology and Geocryology,1996,18(4):360-365.
    [8] Tian L D, Yao T D, Mac Clune K,et al. Stable isotopic variations in west China:A consideration of moisture sources[J]. Journal of Geophysical Research:Atmospheres,2007,112(D10):D10112.
    [9]田立德,姚檀栋,Numaguti A,等.青藏高原南部季风降水中稳定同位素波动与水汽输送过程[J].中国科学(D辑),2001,31(S1):215-220.
    [10]田立德,姚檀栋,孙维贞,等.青藏高原中部降水稳定同位素变化与季风活动[J].地球化学,2001,30(3):217-222.Tian L D,Yao T D,Sun W Z,et al. Stable isotope variation of precipitation in the middle of Qinghai-Xizang Plateau and monsoon activity[J]. Geochimica,2001,30(3):217-222.
    [11] Yao T D,Zhou H,Yang X X. Indian monsoon influences altitude effect ofδ18O in precipitation/river water on the Tibetan Plateau[J]. Chinese Science Bulletin,2009,54(16):2724-2731.
    [12] Yao T D,Masson-Delmotte V,Gao J,et al. A review of climatic controls onδ18O in precipitation over the Tibetan Plateau:observations and simulations[J]. Reviews of Geophysics,2013,51(4):525-548.
    [13] Yu W S,Yao T D,Tian L D,et al. Stable isotope variations in precipitation and moisture trajectories on the western Tibetan Plateau,China[J]. Arctic,Antarctic,and Alpine Research,2007,39(4):688-693.
    [14] Zhang X P,Nakawo M,Yao T D,et al. Variations of stable isotopic compositions in precipitation on the Tibetan Plateau and its adjacent regions[J]. Science in China Series D:Earth Sciences,2002,45(6):481-493.
    [15] Yu W S,Yao T D,Tian L D,et al. Relationships betweenδ18O in precipitation and air temperature and moisture origin on a south-north transect of the Tibetan Plateau[J]. Atmospheric Research,2008,87(2):158-169.
    [16]余武生,马耀明,孙维贞,等.青藏高原西部降水中δ18O变化特征及其气候意义[J].科学通报,2009,54(15):2131-2139.Yu W S,Ma Y M,Sun W Z,et al. Climatic significance ofδ18O records from precipitation on the western Tibetan Plateau[J].Chinese Science Bulletin,2009,54(16):2732-2741.
    [17]姚檀栋,张寅生,蒲健辰,等.青藏高原唐古拉山口冰川、水文和气候学观测20a:意义与贡献[J].冰川冻土,2010,32(6):1152-1161.Yao T D,Zhang Y S,Pu J C,et al. Twenty-year observations of glacier,hydrology and meteorology at the Tanggula Pass of the Tibetan Plateau:significance and achievements[J]. Journal of Glaciology and Geocryology,2010,32(6):1152-1161.
    [18]张寅生,姚檀栋,蒲健辰,等.青藏高原唐古拉山冬克玛底河流域水文过程特征分析[J].冰川冻土,1997,19(3):214-222.Zhang Y S,Yao T D,Pu J C,et al. The features of hydrological processes in the Dongkemadi River Basin, Tanggula Pass,Tibetan Plateau[J]. Journal of Glaciology and Geocryology,1997,19(3):214-222.
    [19]王倩茹,范广洲,赖欣,等.西藏那曲地区一次霰过程的大气边界层特征分析[J].气象,2018,44(3):396-407.Wang Q R,Fan G Z,Lai X,et al. Analysis of atmospheric boundary layer characteristics of a graupel process in Nagqu region[J]. Meteorological Monthly,2018,44(3):396-407.
    [20] Craig H. Isotopic variations in meteoric waters[J]. Science,1961,133(3465):1702-1703.
    [21] Draxler R R,Hess G D. An overview of the HYSPLIT_4modelling system for trajectories,dispersion and deposition[J].Australian Meteorological Magazine,1998,47(4):295-308.
    [22] Wang Y Q,Stein A F,Draxler R R,et al. Global sand and dust storms in 2008:observation and HYSPLIT model verification[J]. Atmospheric Environment,2011,45(35):6368-6381.
    [23]张学文.气流对物质和能量输送量的垂直分布[J].沙漠与绿洲气象,2009,3(2):1-5.Zhang X W. Vertical distribution of the transported quantity of material and energy by airflow[J]. Desert and Oasis Meteorology,2009,3(2):1-5.
    [24] Araguás-Araguás L,Froehlich K,Rozanski K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture[J]. Hydrological Processes,2000,14(8):1341-1355.
    [25]郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究[J].科学通报,1983,28(13):801-806.
    [26] Tian L D,Ma L L,Yu W S,et al. Seasonal variations of stable isotope in precipitation and moisture transport at Yushu,eastern Tibetan Plateau[J]. Science in China Series D:Earth Sciences,2008,51(8):1121-1128.
    [27]章新平,孙维贞,刘晶淼.西南水汽通道上昆明站降水中的稳定同位素[J].长江流域资源与环境,2005,14(5):665-669.Zhang X P,Sun W Z,Liu J M. Stable isotopes in precipitation in the vapor transport path in Kunming of southwest China[J].Resources and Environment in the Yangtze Basin,2005,14(5):665-669.
    [28] Tian L D,Yao T D,Sun W Z,et al. Relationship betweenδD andδ18O in precipitation on north and south of the Tibetan Plateau and moisture recycling[J]. Science in China Series D:Earth Sciences,2001,44(9):789-796.
    [29]杨玉忠,吴青柏,贠汉伯.北麓河多年冻土区降水及河水稳定同位素特征分析[J].水科学进展,2013,24(6):778-785.Yang Y Z,Wu Q B,Yun H B. Characteristic analysis of stable isotope variation in precipitation and rivers in Beilu River permafrost region[J]. Advances in Water Science,2013,24(6):778-785.
    [30]李永格,李宗省,冯起,等.托来河流域不同海拔降水稳定同位素的环境意义[J].环境科学,2018,39(6):2661-2672.Li Y G,Li Z X,Feng Q,et al. Environmental significance of the stable isotopes in precipitation at different altitudes in the Tuolai River Basin[J]. Environmental Science,2018,39(6):2661-2672.
    [31]李小飞,张明军,王圣杰,等.黄河流域大气降水氢、氧稳定同位素时空特征及其环境意义[J].地质学报,2013,87(2):269-277.Li X F,Zhang M J,Wang S J,et al. Spatial and temporal variations of hydrogen and oxygen isotopes in precipitation in the Yellow River Basin and its environmental significance[J]. Acta Geologica Sinica,2013,87(2):269-277.
    [32] Hughes C E,Crawford J. Spatial and temporal variation in precipitation isotopes in the Sydney Basin,Australia[J]. Journal of Hydrology,2013,489:42-55.
    [33]马潜,张明军,王圣杰,等.基于氢氧同位素的中国东南部降水局地蒸发水汽贡献率[J].地理科学进展,2013,32(11):1712-1720.Ma Q,Zhang M J,Wang S J,et al. Contributions of moisture from local evaporation to precipitations in southeast China based on hydrogen and oxygen isotopes[J]. Progress in Geography,2013,32(11):1712-1720.
    [34]徐振,刘玉虹,王中生,等.卧龙降水稳定同位素与季风活动的关系[J].环境科学,2008,29(4):1007-1013.Xu Z,Liu Y H,Wang Z S,et al. Relationships between stable isotopes in precipitation in Wolong and monsoon activity[J].Environmental Science,2008,29(4):1007-1013.
    [35]吴锦奎,杨淇越,丁永建,等.黑河流域大气降水稳定同位素变化及模拟[J].环境科学,2011,32(7):1857-1866.Wu J K,Yang Q Y,Ding Y J,et al. Variations and simulation of stable isotopes in precipitation in the Heihe River basin[J].Environmental Science,2011,32(7):1857-1866.
    [36] Johnson K R,Ingram B L. Spatial and temporal variability in the stable isotope systematics of modern precipitation in China:implications for paleoclimate reconstructions[J]. Earth and Planetary Science Letters,2004,220(3-4):365-377.
    [37] Zhang X P,Yao T D,Liu J M,et al. Simulations of stable isotopic fractionation in mixed cloud in middle latitudes-taking the precipitation atürümqi as an example[J]. Advances in Atmospheric Sciences,2003,20(2):261-268.
    [38]卫克勤,林瑞芬.论季风气候对我国雨水同位素组成的影响[J].地球化学,1994,23(1):32-41.Wei K Q,Lin R F. The influence of the monsoon climate on the isotopic composition of precipitation in China[J]. Geochimica,1994,23(1):32-41.
    [39]董小芳,邓黄月,张峦,等.上海降水中氢氧同位素特征及与ENSO的关系[J].环境科学,2017,38(5):1817-1827.Dong X F,Deng H Y,Zhang L,et al. Characteristics of stable isotope in precipitation and its relationship with ENSO in Shanghai[J]. Environmental Science,2017,38(5):1817-1827.
    [40]李广,章新平,张立峰,等.长沙地区不同水体稳定同位素特征及其水循环指示意义[J].环境科学,2015,36(6):2094-2101.Li G, Zhang X P, Zhang L F, et al. Stable isotope characteristics in different water bodies in Changsha and implications for the water cycle[J]. Environmental Science,2015,36(6):2094-2101.
    [41]柳鉴容,宋献方,袁国富,等.中国东部季风区大气降水δ18O的特征及水汽来源[J].科学通报,2009,54(22):3521-3531.Liu J R,Song X F,Yuan G F,et al. Characteristics ofδ18O in precipitation over eastern monsoon China and the water vapor sources[J]. Chinese Science Bulletin,2010,55(2):200-211.
    [42] Chahine M T. The hydrological cycle and its influence on climate[J]. Nature,1992,359(6394):373-380.
    [43]杨梅学,姚檀栋,田立德,等.藏北高原夏季降水的水汽来源分析[J].地理科学,2004,24(4):426-431.Yang M X,Yao T D,Tian L D,et al. Analysis of precipitation from different water vapor sources in Tibetan Plateau[J].Scientia Geographica Sinica,2004,24(4):426-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700