用户名: 密码: 验证码:
一种含赤铁矿包裹体绿柱石的谱学特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spectral Characteristic of Beryl Containing Hematite Inclusion
  • 作者:刘佳 ; 刘芳丽 ; 王雅玫 ; 刘芬 ; 何翀
  • 英文作者:LIU Jia;LIU Fang li;WANG Ya mei;LIU Fen;HE Chong;Gem Testing Center, China University of Geosciences;Gemmological Institute, China University of Geosciences;
  • 关键词:绿柱石 ; 赤铁矿 ; 拉曼光谱 ; 红外光谱 ; 显微紫外-可见-近红外光谱
  • 英文关键词:beryl;;hematite;;Raman spectrum;;infrared spectrum;;micro UV-Vis-NIR spectrum
  • 中文刊名:宝石和宝石学杂志
  • 英文刊名:Journal of Gems & Gemmology
  • 机构:中国地质大学珠宝检测中心;中国地质大学珠宝学院;
  • 出版日期:2019-07-15
  • 出版单位:宝石和宝石学杂志
  • 年:2019
  • 期:04
  • 基金:中国地质大学(武汉)珠宝检测技术创新中心,文章编号GICTWZ-2018024
  • 语种:中文;
  • 页:23-28
  • 页数:6
  • CN:42-1438/TS
  • ISSN:1008-214X
  • 分类号:TS933.21
摘要
本文所研究的绿柱石是以定向赤铁矿为主要包裹体的一种市场罕见品种,利用LA-ICP-MS、拉曼光谱仪、红外光谱仪、显微紫外-可见-近红外光谱仪对该绿柱石进行详细谱学特征研究。该绿柱石样品除主量BeO,Al_2O_3,SiO_2外,含一定量的Fe、Mn、Cs、Ti、V,碱金属总质量分数为0.48%,为贫碱型绿柱石;经拉曼光谱仪测定了其核部主矿物平行c轴和垂直c轴的拉曼位移及赤铁矿包裹体拉曼位移;红外光谱仪确定核部主矿物指纹区振动频率及结构水振动频率:I型结构水位于3 699 cm~(-1)处,Ⅱ型结构水位于3 661,3 596 cm~(-1)处。显微紫外-可见-近红外光谱分析结果显示,E⊥c轴偏振方向可见Fe~(3+)的371,427 nm处吸收,Fe~(2+)的820 nm处吸收,I型水位于1 402、1 835、1 956 nm处吸收和Ⅱ型水位于1 369、1 897 nm处吸收;E//c轴偏振方向可见Fe~(3+)的427 nm处吸收,I型水1 402、1 467 nm处吸收,Ⅱ型水1 152、 897 nm处吸收。在平行c轴方向,Ⅱ型水强度较垂直c轴方向强。对该罕见以赤铁矿为主要包裹体的绿柱石样品成分、谱学的详细研究,丰富了该品种绿柱石的宝石学特征相关资料,为后人研究奠定基础。
        The beryl studied in this paper is a rare kind of beryl with hematite as the main inclusion. The detail spectral characteristics study were carried out on the samples by using LA-ICP-MS, Raman spectroscopy, IR spectroscopy and UV-Vis-NIR microscopic spectrophotometer. The samples contain a certain amount of Fe, Mn, Cs, Ti and V except the main amounts of BeO, Al_2O_3 and SiO_2, and the total amount of alkali elements is 0.48%, which belongs to alkali-poor beryl. Using the Raman spectrometer, we got the Raman shifts of I region sample parallel to c axis and vertical to c axis. Measurement of the infrared vibration frequency was performed using infrared spectrometer, acquiring the results of 3 699 cm~(-1) for type I water, 3 661 cm~(-1) and 3 596 cm~(-1) for type Ⅱ water. With the Jasco Msv-5200, the Micro-UV-Vis-NIR spectra shows that in E⊥c direction absorption peaks at 371, 427 nm were caused by Fe~(3+); 820 nm was caused by Fe~(2+), and the 1 402, 1 835, 1 956 nm were caused by type I water and 1 369, 1 897 nm were caused by type Ⅱ water. The polarization direction of E//c shows the absorption of Fe~(3+) at 427 nm, and the absorption of type I water at 1 402, 1 467 nm; type Ⅱ water at 1 152, 1 897 nm. The strength of type Ⅱ water is stronger in the direction parallel to the c axis than that in the direction perpendicular to the c axis. The study enriches the gemmological study of this kind of beryl and lays a foundation for future research.
引文
[1]裴景成,张汉凯.绿柱石中包裹体研究进展[J].地质科技情报,2000,19(1):31-34.
    [2]吴长年,杨升祖.新疆阿尔泰库威和可可托海伟晶岩绿柱石中包裹体研究[J].南京大学学报(自然科学),1995(2):350-356.
    [3]Thomas R,Davidson P,Badanina E.A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite,East Transbaikalia,Russia:Implications for pegmatite-forming melt systems[J].Mineralogy&Petrology,2009,96(3-4):129-140.
    [4]闫晨,Moroz I I,Eliezri I Z.不同产地祖母绿中的矿物包裹体[J].宝石和宝石学杂志,1999,1(3):49-54.
    [5]Arlabosse J M.“Sunberyl”-beryl with hematite platelets inclusion[EB/OL].[2019-01-23].http:∥www.gemsolidphase.com/publications.php.
    [6]Le T,Huong T,Hger T.On some controversially-discussed Raman and IR bands of beryl[J].VNU Journal of Science,Earth Sciences,2010,26(1):32-41.
    [7]Ostrooumov M.Aquamarine from a new primary deposit in Mexico[J].Gems&Gemology,2016,52(3):317.
    [8]ヒodziński M,Sitarz M,Stec K,et al.ICP,IR,Raman,NMR investigations of beryls from pegmatites of the Sudety Mts[J].Journal of Molecular Structure,2005(744-747):1 005-1 015.
    [9]Hagemann H,Lucken A,Bill H,et al.Polarized Raman spectra of beryl and bazzite[J].Physics&Chemistry of Minerals,1990,17(5):395-401.
    [10]Charoy B,Donato P D,Barres O,et al.Channel occupancy in an alkali-poor beryl from Serra Branca(Goias,Brazil):Spectroscopic characterization[J].American Mineralogist,1996,81(3-4):395-403.
    [11]Aurisicchio C,Fioravanti G,Grubessi O,et al.Reappraisal of the crystal chemistry of beryl[J].American Mineralogist,1988,73(7):826-837.
    [12]周天怡,陈衍景,张辉.新疆阿尔泰伟晶岩中绿柱石拉曼光谱特征研究---以可可托海3号脉与阿祖拜328、528号脉为例[J].岩石矿物学杂志,2014(S2):77-84.
    [13]Huong L T.Confocal micro-Raman spectroscopy:A powerful tool to identify natural and synthetic emeralds[J].Gems&Gemology,2010,46(1):36-41.
    [14]Adamo I,Pavese A,Prosperi L,et al.Aquamarine,Maxixe-type beryl,and hydrothermal synthetic blue beryl:A-nalysis and identification[J].Gems&Gemology,2008,44(3):214-226.
    [15]FridrichováJ,Bacˇík P,Ertl A,et al.Jahn-Teller distortion of Mn3+-occupied octahedra in red beryl from Utah indicated by optical spectroscopy[J].Journal of Molecular Structure,2018(1 152):79-86.
    [16]Taran M N,Dyar M D,Khomenko V M.Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl[J].Physics&Chemistry of Minerals,2017(2):1-8.
    [17]Yu X Y,Hu D Y,Niu X W,et al.Infrared spectroscopic characteristics and ionic occupation in crystalline tunneling system of yellow beryl[J].The Minerals,Metals&Materials Society,2017,69(4):704-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700