用户名: 密码: 验证码:
冰透镜体形成过程中的土体破裂驱动力研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on driving forces of soil fracture during ice lens formation process
  • 作者:刘宇航 ; 李东庆 ; 明锋
  • 英文作者:LIU Yuhang;LI Dongqing;MING Feng;State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:冻胀 ; 冰透镜体 ; 力学判据 ; 土体破裂驱动力 ; 微观结晶应力
  • 英文关键词:frost heaving;;ice lens;;mechanical criterion;;driving force of fracture of soil;;microcosmic crystallization stress
  • 中文刊名:冰川冻土
  • 英文刊名:Journal of Glaciology and Geocryology
  • 机构:中国科学院西北生态环境资源研究院冻土工程国家重点实验室;中国科学院大学;
  • 出版日期:2019-07-26 16:03
  • 出版单位:冰川冻土
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目(41701060);; 中国科学院前沿科学重点研究项目(QYZDY-SSW-DQC015)资助
  • 语种:中文;
  • 页:159-170
  • 页数:12
  • CN:62-1072/P
  • ISSN:1000-0240
  • 分类号:P642.14
摘要
随着寒区工程高等级化和变形限制要求的进一步严格化,冻胀问题已经成为寒区工程建设考虑的关键问题。造成冻胀的原因在于外界水分迁移冻结并形成冰透镜体,因此,深入认识冰透镜体形成问题对解决实际工程中的冻害问题具有重要的意义。由于冰透镜体的形成受控于土体破裂驱动力,因此,深入开展冻结过程中的土体破裂驱动力研究对阐明冰透镜体的生长机理以及解决工程冻胀问题具有重要的指导意义。通过对国内外在土体冻结过程中的土体破裂驱动力方面的研究进行综合评述,指出各研究结果之间的异同点。基于各研究结果的相同点,分析了目前土体破裂驱动力研究中存在的不足,并提出了今后研究发展的方向。
        With the high-grade engineering in cold regions and the further stringency of deformation restriction requirements, frost heaving is the key issue must be considered in engineering construction in cold regions. The reason of frost heaving is that the water migration and phase change into ice and ice lenses are formed. Therefore, it is important to understand the formation of ice lenses deeply to solve the problem of frost damage in practical engineering. The formation of ice lens is controlled by the driving force of soil fracture, therefore, it is of great significance to do research in the driving force of soil rupture during freezing process for clarifying the growth mechanism of ice lenses and solving the frost heave problem in engineering. In this research, the driving forces of soil rupture during soil freezing at home and abroad were comprehensively reviewed, and the similarities and differences between the results were pointed out. Based on the similarities of the research results, the shortcomings of the current research on driving forces of soil fracture are analyzed, and the future research directions are proposed.
引文
[1] Ma Wei,Niu Fujun,Mu Yanhu.Basic research on the major permafrost projects in the Qinghai-Tibet Plateau[J].Advances in Earth Science,2012,27(11):1185-1191.[马巍,牛富俊,穆彦虎.青藏高原重大冻土工程的基础研究[J].地球科学进展,2012,27(11):1185-1191.]
    [2] Yu Fan,Qi Jilin,Lai Yuanming,et al.Typical embankment settlement/heave patterns of the Qinghai-Tibet highway in permafrost regions:formation and evolution[J].Engineering Geology,2016,214:147-156.
    [3] Wang Guoshang,Yu Qihao,Guo Lei.Hierachical object method of highway route selection in permafrost region[J].Journal of Traffic and Transportation Engineering,2014,36(1):137-143.[王国尚,俞祁浩,郭磊.多年冻土区输电线路冻融灾害防控研究[J].冰川冻土,2014,36(1):137-143.]
    [4] Du Zhaocheng,Zhang Xifa,Xin Degang,et al.Experiment research on subgrade frost heaving of expressway in seasonally frozen soil region[J].Highway,2004(1):139-144.[杜兆成,张喜发,辛德刚,等.季节性冻土区高速公路基冻胀试验观测研究[J].公路,2004(1):139-144.]
    [5] Sheng Daichao,Zhang Sheng,Niu Fujun,et al.A potential new frost heave mechanism in high-speed railway embankments[J].Géotechnique,2014,64(2):144-154.
    [6] Shi Gangqiang,Zhao Shiyun,Li Xianming.The frost heaving deformation of high-speed railway subgrades in cold regions:monitoring and analyzing[J].Journal of Glaciology and Geocryology,2014,36(2):360-368.[石刚强,赵世运,李先明.严寒地区高速铁路路基冻胀变形监测分析[J].冰川冻土,2014,36(2):360-368.]
    [7] Yang Ping,She Caigao,Dong Chaowen,et al.Application of artificial freezing method in Zhang Fuyuan station of Nanjing subway′s[J].Rock and Soil Mechanics,2003,24(2):388-391.[杨平,佘才高,董朝文,等.人工冻结法在南京地铁张府园车站的应用[J].岩土力学,2003,24(2):388-391.]
    [8] Ji Zhiqiang,Lü Xin,Li Haipeng,et al.Application prospect of frozen soil barrier in containments isolation[J].Science Technology and Engineering,2016,16(26):158-165.[吉植强,吕昕,李海鹏,等.人工冻结土污染物隔离屏障应用现状及研究展望[J].科学技术与工程,2016,16(26):158-165.]
    [9] Bouyoucos J G.The phenomena of contraction and expansion of soils when wetted with water[J].Soil Science,1927,23:119-126.
    [10] Taber S.Frost heaving[J].Journal of Geology,1929,37(5):428-461.
    [11] Taber S.The mechanics of frost heaving[J].Journal of Geology,1930,38(4):303-317.
    [12] Xu Xiaozu,Wang Jiacheng,Zhang Lixin.Physics of frozen soil[M].2nd ed.Beijing:Science Press,2010.[徐斅祖,王家澄,张立新.冻土物理学[M].2版.北京:科学出版社,2010.]
    [13] Wang Jiacheng,Xu Xiaozu,Zhang Lixin,et al.Experimental study of influence of soil type on ice formation and cryogenic structure of freezing soils[J].Journal of Glaciology and Geocryology,1995,17(1):16-22.[王家澄,徐斅祖,张立新,等.土类对正冻土成冰及冷生组构影响的实验研究[J].冰川冻土,1995,17(1):16-22.]
    [14] Wang Jiacheng,Xu Xiaozu,Zhang Lixin,et al.Influence of temperature and pressure on cryogenic structure of freezing soil[J].Journal of Glaciology and Geocryology,1995,17(3):250-257.[王家澄,徐斅祖,张立新,等.温度和压力条件对正冻土中成冰过程和冷生组构的影响[J].冰川冻土,1995,17(3):250-257.]
    [15] Peterson R A.Assessing the role of differential frost heave in the origin of non-sorted circles[J].Quaternary Research,2011,75(2):325-333.
    [16] Takeda K,Okamura A.Microstruture of freezing front in freezing soils[C]// Proceedings of the International Symposium of Ground Freezing.Lulea,Sweden:Lulea University of Technology,1997:171-178.
    [17] Watanabe K,Mizoguchi M,Ishizaki T,et al.Experimental study on microstructure near freezing front during soil freezing[C]// Proceedings of the International Symposium of Ground Freezing.Lulea,Sweden:Lulea University of Technology,1997:53-58.
    [18] Sugita A,Ishizaki T,Fukuda M.Characteristics of the soil-structures of frozen soils[J].Korean Society of Civil Engineers,1996,3(11):425-428.
    [19] Biermans M B G M,Dijkema K M,Vries D A D.Water movement in porous media towards an ice front[J].Journal of Hydrology,1978,37(1):137-148.
    [20] Li Ping,Xu Xiaozu,Chen Fengfeng.State and progress of research on the frozen fringe and frost heave prediction models[J].Journal of Glaciology and Geocryology,2000,22(1):90-85.[李萍,徐斅祖,陈峰峰.冻结缘和冻胀模型的研究现状与进展[J].冰川冻土,2000,22(1):90-85.]
    [21] Li Ping,Xu Xiaozu,Pu Yibin,et al.Analyses of characteristics of frozen fring by using the digital technique of picture[J].Journal of Glaciology and Geocryology,1999,21(2):175-180.[李萍,徐斅祖,蒲毅彬,等.利用图像数字化技术分析冻结缘特征[J].冰川冻土,1999,21(2):175-180.]
    [22] Arenson L U,Sego D C,Take W A.Measurement of ice lens growth and soil consolidation during frost penetration using particle image velocimetry (PIV)[C]// Proceedings of the 60th Canadian Geotechnical Conference.Ottawa,Canada:Canadian Geotechnical Society,2007:2046-2053.
    [23] Arenson L U,Azmatch T F,Sego D C,et al.A new hypothesis on ice lens formation in frost-susceptible soils[C] //Proceedings of the 9th International Conference on Permafrost:vol 1.Fairbanks,Alaska,USA:University of Alaska Fairbanks,2008:59-64.
    [24] Wang Yongtao,Wang Dayan,Ma Wei,et al.Experimental study of development of cry structure and frost heave of the Qinghai-Tibet silty clay under one-dimensional freezing[J].Rock and Soil Mechanics,2016,37(5):1333-1342.[王永涛,王大雁,马巍,等.青藏粉质黏土单向冻结冷生构造发育及冻胀发展过程试验研究[J].岩土力学,2016,37(5):1333-1342.]
    [25] Wang Yongtao,Wang Dayan,Ma Wei,et al.Development and application of frost heaving experimental system based on the digital image processing[J].Journal of Glaciology and Geocryology,2017,39(5):1047-1056.[王永涛,王大雁,马巍,等.基于数字图像技术的土冻胀试验系统研究[J].冰川冻土,2017,39(5):1047-1056.]
    [26] Zhou Jiazuo,Wei Changfu,Wei Hongzhou,et al.Experimental and theoretical characterization of frost heave and ice lenses[J].Cold Regions Science and Technology,2014,104/105:76-87.
    [27] Sheshukov A Y ,Nieber J L .One-dimensional freezing of nonheaving unsaturated soils:Model formulation and similarity solution[J].Water Resources Research,2011,47(11):11519.
    [28] Azmatch T F,Sego D C,Arenson L U,et al.Tensile strength and stress-strain behaviour of Devon silt under frozen fringe conditions[J].Cold Regions Science & Technology,2011,68(1):85-90.
    [29] Sill R C,Skapski A S.Method for the determination of the surface tension of solids,from their melting points in thin wedges[J].The Journal of Chemical Physics,1956,24:644-651.
    [30] Everett D H.The thermodynamics of frost damage to porous solids[J].Transactions of Faraday Society,1961,57(5):1541-1551.
    [31] Loch J P G,Miller R D.Tests of the concept of secondary frost heaving 1[J].Soil Science Society of America Journal,1975,39(6):1036-1041.
    [32] Zhou Jiazuo,Li Dongqing,Fang Jianhong,et al.Numerical analysis of heat and mass transfers in saturated freezing soil in an open system[J].Journal of Glaciology and Geocryology,2011,33(4):791-795.[周家作,李东庆,房建宏,等.开放系统下饱和正冻土热质迁移的数值分析[J].冰川冻土,2011,33(4):791-795.]
    [33] Ming Feng,Zhang Yu,Li Dongqing.Experimental and theoretical investigations into the formation of ice lenses in deformable porous media[J].Geosciences Journal,2016,20(5):667-679.
    [34] Gilpin R R.A model for the prediction of ice lensing and frost heave in soils[J].Water Resources Research,1980,16(15):918-930.
    [35] Hopke S W.A model for frost heave including overburden pressure[J].Cold Regions Science and Technology,1980,3(2):111-127.
    [36] Miller R D.Lens initiation in secondary heaving[C]// Proceedings of the International Symposium on Frost Action in Soils.Sweden:Lulea University of Technology,1977:68-74.
    [37] Sheng Daichao,Axelsson K,Knutisson S.Frost heave due to ice lens formation in freezing soils 1:theory and verification[J].Nordic Hydrology,1995,26(2):125-146.
    [38] Thomas H R,Cleall P,Li Y C,et al.Modelling of cryogenic processes in permafrost and seasonally frozen soils[J].Géotechnique,2009,59:173-184.
    [39] Chen Feixiong,Li Ning,Cheng Guodong.The theoretical frame of multi-phase porous medium for the freezing soil[J].Chinese Journal of Geotechnical Engineering,2002,24(2):213-217.[陈飞熊,李宁,程国栋.饱和正冻土多孔多相介质的理论构架[J].岩土工程学报,2002,24(2):213-217.]
    [40] Vignes M,Dijkema X M.A model for the freezing of water in a dispersed medium[J].Journal of Colloid & Interface Science,1974,49:165-172.
    [41] Drost H W.The water-ice interface as seen from the liquid side[J].Journal of Colloid & Interface Science,1967,25(2):131-160.
    [42] Derjaguin B V,Churaev N V.The theory of frost heaving[J].Progress in Surface Science,1993,67(3):391-396.
    [43] Cao Hongzhang.Multi field coupling study on freezing process of saturated granular soil[D].Beijing:Institute of Engineering Thermophysics,Chinese Academy of Sciences,2006.[曹宏章.饱和颗粒土冻结过程中的多场耦合研究[D].北京:中国科学院工程热物理研究所,2006.]
    [44] Zhou Yang.Study on frost heave model and frost control of frozen soils[D].Xuzhou:China University of Mining & Technology,2009.[周扬.冻土冻胀理论及冻胀控制研究[D].徐州:中国矿业大学,2009.]
    [45] Zhou Yang,Zhou Guoqing,Zhou Jinsheng,et al.Ice lens growth process involving coupled moisture and heat transfer during freezing of saturated soil[J].Chinese Journal of Geotechnical Engineering,2010,32(4):578-585.[周扬,周国庆,周金生,等.饱和土冻结透镜体生长过程水热耦合分析[J].岩土工程学报,2010,32(4):578-585.]
    [46] Tian Xia,Cui Junzhi.Computation of the thermo-mechanical behaviors of polycrystalline structures at micro-scale based in molecular dynamics[J].Chinses Journal of Computational Mechanics,2012,29(1):95-98.[田霞,崔俊芝.基于分子动力学模拟的多晶结构微观热-力耦合行为的计算[J].计算力学学报,2012,29(1):95-98.]
    [47] Cai Zhiyong.Study on microscope characteristics of interface by molecular dynamics simulation[D].Chongqing:Chongqing University,2008.[蔡治勇.界面微观特性的分子动力学模拟研究[D].重庆:重庆大学,2008.]
    [48] Dash J G,Rempel A W,Wettlaufer J S.The physics of premelted ice and its geophysical consequences[J].Reviews of Modern Physics,2006,78(3):695-741.
    [49] Dash J G.Thermomolecular pressure in surface melting:motivation for frost heave[J].Science,1989,246(4937):1591-1593.
    [50] Wei S,Narayanan R.Fluid dynamics at interfaces[M].Cambridge,UK:Cambridge University Press,1999.
    [51] Rempel A W,Wettlaufer J S,Grae Worster M.Premelting dynamics in a continuum model of frost heave[J].Journal of Fluid Mechanics,2004,498:227-244.
    [52] Washburn A L.Permafrost features as evidence of climatic change[J].Earth-Science Reviews,1980,15(4):327-402.
    [53] Rempel A W.Microscopic and environmental controls on the spacing and thickness of segregated ice lenses[J].Quaternary Research,2011,75(2):316-324.
    [54] Miao Tiande,Guo Li,Niu Yonghong,et al.The theoretical model of mixtures of the problems of water and heat migration in frozen soil[J].Science in China:Series D Earth Sciences,1999(Suppl 1):8-14.[苗天德,郭力,牛永红,等.正冻土中水热迁移问题的混合物理论模型[J].中国科学:D辑地球科学,1999(增刊1):8-14.]
    [55] Groenevelt P H,Kay B D.On the interaction of water and heat transport in frozen and unfrozen soils:II.the liquid phase 1[J].Soil Science Society of America Journal,1974,38(3):400-404.
    [56] Groenevelt P H,Kay B D.Water and ice potentials in frozen soils[J].Water Resources Research,1977,13(2):445-449.
    [57] An Weidong,Chen Xiaobai,Wu Ziwang.Numerical simulation analysis of heat and mass transfer under a channel in freezing[J].Journal of Glaciology and Geocryology,1987,9(1):35-46.[安维东,陈肖柏,吴紫汪.渠道冻结时热质迁移的数值模拟[J].冰川冻土,1987,9(1):35-46.]
    [58] Zhang Lianhai,Ma Wei,Yang Chengsong,et al.Investigation of the pore water pressures of coarse-grained sandy soil during open-system step-freezing and thawing testing[J].Engineering Geology,2014,181:233-248.
    [59] Ma Wei,Zhang Lianhai,Yang Chengsong.Discussion on applicability of the generalized Clausius-Clapeyron equation and the frozen fringe process[J].Earths-Science Reviews,2015,142:47-59.
    [60] Zeng Guijun,Zhang Mingyi,Li Zhenping,et al.Review of mechanical criterion for formation of ice lens in freezing soil[J].Journal of Glaciology and Geocryology,2015,37(1):192-201.[曾桂军,张明义,李振萍,等.冻土中冰透镜体形成力学判据的分析讨论[J].冰川冻土,2015,37(1):192-201.]
    [61] Lu Jianguo,Zhang Mingyi,Zhang Xiyin,et al.Review of the coupled hydro-thermo-mechanical interaction of frozen soil[J].Journal of Glaciology and Geocryology,2017,39(1):102-111.[路建国,张明义,张熙胤,等.冻土水热力耦合研究现状及进展[J].冰川冻土,2017,39(1):102-111.]
    [62] Wu Daoyong,Lai Yuanming,Zhang Mingyi.Thermo-hydro-salt-mechanical coupled model for saturated porous media based on crystallization kinetics[J].Cold Regions Science & Technology,2017,133:94-107.
    [63] Brown S C.Soil freezing[D].Reading,Berkshire,UK:University of Reading,1984.
    [64] Akagawa,S.Experimental study of frozen fringe characteristics[J].Cold Regions Science and Technology,1988,15:209-223.
    [65] Watanabe K,Mizoguchi M.Ice configuration near a growing ice lens in a freezing porous medium consisting of micro glass particles[J].Journal of Crystal Growth,2000,213(1/2):135-140.
    [66] Watanabe K.Relationship between growth rate and supercooling in the formation of ice lenses in a glass powder[J].Journal of Crystal Growth,2002,237:2194-2198.
    [67] Style R W,Peppin S S L.The kinetics of ice-lens growth in porous media[J].Journal of Fluid Mechanics,2012,692(2):482-498.
    [68] Kurylyk B L,Watanable K.The mathematical representation of freezing and thawing processes in variably-saturated non-deformable soils[J].Advances in Water Resources,2013,60:160-177.
    [69] Michalowski R L,Zhu M.Frost heave modelling using porosity rate function[J].International Journal for Numerical and Analytical Methods in Geomechanics,2006,30(8):703-722.
    [70] Espinosa R M,Franke L,Deckelmann G.Model for the mechanical stress due to the salt crystallization in porous materials[J].Constrution and Building Materitals,2008,22:1350-1367.
    [71] Ju Xiaodong,Feng Wenjuan,Zhang Yujun,et al.Crystallization stresses in brittle porous media[J].Chinese Journal of Geotechnical Engineering,2016,38(7):1246-1253.[琚晓冬,冯文娟,张玉军,等.脆性孔隙介质内的结晶应力[J].岩土工程学报,2016,38(7):1246-1253.]
    [72] Scherer G W.Stress from crystallization of salt[J].Cement and Concrete Research,2004,34(9):1613-1624.
    [73] Scherer G W.Crystallization in pores[J].Cement and Concrete Research,1999,29(8):1347-1358.
    [74] Castellazzi G,Colla C.Miranda S,et al.A coupled multiphase model for hygrothermal analysis of masonry structures and prediction of stress induced by salt crystallization[J].Construction and Building Materials,2013,41:717-731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700