用户名: 密码: 验证码:
土壤压实胁迫下丛枝菌根真菌对高羊茅生理生态的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Arbuscular Mycorrhizal Fungi on Physiology and Ecology of Festuca elata under Soil Compaction Stress
  • 作者:徐萌 ; 徐孟 ; 李峰
  • 英文作者:XU Meng;XU Meng;LI Feng;College of Landscape Architecture and Forestry, Qingdao Agricultural University;
  • 关键词:丛枝菌根真菌 ; 土壤压实 ; 光合参数 ; 叶绿素 ; 过氧化氢酶
  • 英文关键词:arbuscular mycorrhizal fungi;;soil compaction;;photosynthetic parameters;;chlorophyll;;catalase
  • 中文刊名:西北植物学报
  • 英文刊名:Acta Botanica Boreali-Occidentalia Sinica
  • 机构:青岛农业大学园林与林学院;
  • 出版日期:2019-09-15
  • 出版单位:西北植物学报
  • 年:2019
  • 期:09
  • 基金:青岛市科技计划基础研究项目(121454)
  • 语种:中文;
  • 页:128-136
  • 页数:9
  • CN:61-1091/Q
  • ISSN:1000-4025
  • 分类号:S688.4
摘要
该试验设计4种土壤压实处理[土壤容重分别为1.2(CK_1)、1.3、1.4和1.5 g·cm~(-3)],并与压实处理前分别接种2种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)——摩西斗管囊霉(Funneliformis mosseae,Fm)和根内根孢囊霉(Rhizophagus intraradices,Ri)组成的4个接种处理[Fm、Ri、Fm+Ri和不接种(CK_2)],共组成16个处理,分析不同处理对高羊茅(Festuca elata)品种‘艾瑞3号’的生理生态指标的影响,为AMF在压实土壤中的应用提供理论基础。结果表明:(1)高羊茅根系的菌根侵染率和菌丝密度均随土壤容重的增加而逐渐降低;与CK_1相比,在土壤容重1.5 g·cm~(-3)处理下接种Fm、Ri、Fm+Ri的高羊茅根系菌根侵染率分别显著降低了27.8%、39.8%和30.0%,菌丝密度分别显著降低43.8%、42.1%和43.8%,且在1.5 g·cm~(-3)土壤容重下,接种Fm+Ri处理的菌根侵染率和菌丝密度比单接种Fm分别提高17.3%和25.2%,比单接种Ri处理分别提高53.0%和36.3%。(2)接种AMF能有效增加土壤压实胁迫下高羊茅植株的株高、分蘖数和干物质质量,显著提高高羊茅耐受力,接种Fm+Ri处理的株高、分蘖数及干物质质量在1.5 g·cm~(-3)土壤容重下分别比未接种(CK_2)显著增加36.1%、39.5%和144.0%。(3)接种AMF能显著提高土壤压实胁迫下高羊茅根系活力以及过氧化氢酶(CAT)活性,接种Fm+Ri处理的根系活力以及CAT活性在1.5 g·cm~(-3)土壤容重下分别是对照(CK_2)的1.4和1.5倍。(4)接种AMF能显著提高土壤压实胁迫下高羊茅叶绿素a、b以及总叶绿素含量,接种Fm+Ri处理在1.5 g·cm~(-3)土壤容重下比对照(CK_2)的上升幅度分别提高43.1%、100.0%和59.3%。(5)接种AMF能显著提高土壤压实胁迫下高羊茅叶片净光合速率(P_n)、蒸腾速率(T_r)以及气孔导度(G_s),显著降低其叶片胞间CO_2浓度(C_i),接种Fm+Ri处理在1.5 g·cm~(-3)土壤容重下比对照(CK_2)的升降幅度分别为52.5%、33.3%、181.1%和-32.9%。综上所述,土壤压实胁迫显著抑制AMF的侵染,而共同接种Fm+Ri能显著促进AMF对根系的侵染,且共同接种处理的效果明显优于单一接种;AMF可通过增强高羊茅根系活力、降低氧化胁迫造成的伤害、提高植物叶绿素含量与光合作用来增强自身的抗土壤压实能力。
        The experiment designed four kinds of soil compaction treatment [soil bulk density of 1.2(CK_1), 1.3, 1.4, 1.5 g·cm~(-3)], and four inoculation treatments [Fm, Ri, Fm+Ri, and non-inoculation(CK_2)] with inoculating two kinds of arbuscular mycorrhizal fungi(including Funneliformis mosseae,Fm and Rhizophagus intraradices,Ri) before compaction treatment, and a total of 16 treatments. We analyzed the effects of different treatments on the physiological and ecological indexes of Festuca elata variety ‘Ai Rui 3’, and provided a theoretical basis for the application of AMF in compacted soil. The results showed that:(1) the mycorrhizal infection rate and mycelial density of the roots of tall fescue decreased gradually with the increase of soil bulk density. Compared with CK_1, the infection rate of roots of high fescue roots inoculated with Fm, Ri and Fm+Ri under treatment with soil bulk density of 1.5 g·cm~(-3) was significantly reduced by 27.8%, 39.8% and 30.0%, respectively. The mycelial density decreased significantly by 43.8%, 42.1% and 43.8%, respectively. Moreover, under 1.5 g·cm~(-3) soil bulk density, the mycorrhizal infection rate and mycelial density of Fm+Ri treatment increased by 17.3% and 25.2%, respectively, which was 53.0% and 36.3% higher than that of single inoculation, respectively.(2) Inoculation with AMF can effectively increase the plant height, tiller number and dry matter quality of tall fescue plants under soil compaction stress, and significantly improve the tolerance of tall fescue. Plant height, tiller number and dry matter quality of Fm+Ri treatment were significantly increased by 36.1%, 39.5% and 144.0%, respectively, under 1.5 g·cm~(-3) soil bulk density compared with CK_2.(3) Inoculation with AMF significantly increased the root activity and catalase(CAT) activity of tall fescue under soil compaction stress. The root vigor and CAT activity of Fm+Ri inoculated with 1.4 g·cm~(-3) soil bulk density were 1.4 times and 1.5 times than that of CK_2, respectively.(4) Inoculation with AMF can significantly increase the contents of chlorophyll a, b and total chlorophyll in tall fescue under soil compaction stress. Inoculation with Fm+Ri treatment in the soil bulk density of 1.5 g·cm~(-3) was 43.1%, 100.0% and 59.3% higher than that of the CK_2.(5) Inoculation with AMF significantly increased the net photosynthetic rate(P_n), transpiration rate(T_r) and stomatal conductance(G_s) of tall fescue under soil compaction stress, and significantly decreased the intercellular CO_2 concentration(C_i) of leaves. Inoculation with Fm+Ri treatment was 52.5%, 33.3%, 181.1% and-32.9% higher than that of the CK_2 under the soil bulk density of 1.5 g·cm~(-3). In summary, soil compaction stress significantly inhibited the infection of AMF, and co-inoculation significantly promoted the infection of AMF on roots, and the effect of co-inoculation with Fm+Ri was significantly better than single inoculation. AMF can enhance its own resistance to soil compaction by enhancing the activity of tall fescue roots, reducing the damage caused by oxidative stress, increasing plant chlorophyll content and photosynthesis.
引文
[1] MUYA E,KIRIGUA V,GORO H,et al.Bridging the gaps between the increasing knowledge and degrading land resource quality in Mosiro:analysis of productivity decline and multi-hierarchal stakeholders platform for redress[J].Journal of Natural Sciences Research,2014,4(17):39-47.
    [2] SCHWEN A,CARRICK S,BUCHAN G.Using tension infiltrometry to assess the effect of subsoil compaction on soil hydraulic properties[J].Egu General Assembly,2010,12:7 190.
    [3] SHAH A N,TANVEER M,SHAHZAD B,et al.Soil compaction effects on soil health and cropproductivity:an overview[J].Environmental Science and Pollution Research,2017,24(11):10 056-10 067.
    [4] HAMZA M A,ANDERSON W K.Soil compaction in cropping systems:A review of the nature,causes and possible solutions[J].Soil & Tillage Research,2005,82(2):121-145.
    [5] ZUO Q S,KUAI J,ZHAO L,et al.The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field[J].Field Crops Research,2017,203:47-54.
    [6] GRZESIAK M T,HURA K,JURCZYK B,et al.Physiological markers of stress susceptibility in maize and triticale under different soil compactions and/or soil water contents[J].Journal of Plant Interactions,2017,12(1):355-372.
    [7] ALAMEDA D,VILLAR R.Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl.seedlings under soil compaction conditions[J].Environmental & Experimental Botany,2012,79:49-57.
    [8] 李文彬,宁楚涵,徐孟,等.丛枝菌根真菌和高羊茅对压实土壤的改良效应[J].草业学报,2018,27(11):134-144.LI W B,NING C H,XU M,et al.Arbuscular mycorrhizal fungi and Festuca elata can improve fertility of compacted soi[J].Acta Prataculturae Sinica,2018,27(11):134-144.
    [9] ROSOLEM C A,PIVETTA L A,GOSS M.Mechanical and biological approaches to alleviate soil compaction in tropical soils:assessed by root growth and activity (Rb uptake) of soybean and maize grown in rotation with cover crops[J].Soil Use and Management,2017,33(1):141-152.
    [10] JOBIM K,VISTA X M,GOTO B T.Updates on the knowledge of arbuscular mycorrhizal fungi (Glomeromycotina) in the atlantic forest biome-an example of very high species richness in the Brazilian landscape[J].Mycotaxon,2018,133(1):209-209.
    [11] WAHL A L,SPIEGELBERGER T.Arbuscular mycorrhizal fungi in changing mountain grassland ecosystems:a challenge for research[J].Botany-botanique,2016,94(6):435-458.
    [12] 蔡晓布,彭岳林.西藏高原不同海拔区域丛枝菌根真菌群落的变化[J].应用生态学报,2015,26(9):2 803-2 810.CAI X B,PENG Y L.Change of arbuscular mycorrhizal fungi community in response to elevational gradients on the Tibetan Plateau,China[J].Chinese Journal of Applied Ecology,2015,26(9):2 803-2 810.
    [13] AMAYA-CARPIO L,DAVIES F T,FOX T,et al.Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis,root phosphatase activity,nutrition,and growth of Ipomoea carneas sp.fistulosa[J].Photosynthetica,2009,47(1):1-10.
    [14] HASSAN S E,HIJRI M,ST-ARNAUD M.Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil[J].New Biotechnology,2013,30(6):780-787.
    [15] 李文彬,宁楚涵,郭绍霞.AM真菌对百合调节激素平衡与细胞渗透性以及改善耐盐性的研究[J].西北植物学报,2018,38(8):130-138.LI W B,NING C H,GUO S X.Research of arbuscular mycorrhizal fungus on adjusting hormone and osmotic balance and improving salt tolerance of Lilium brownii[J].Acta Botanica Boreali-Occidentalia Sinica,2018,38(8):130-138.
    [16] 王志刚,毕银丽,李强,等.接种AM真菌对采煤沉陷地复垦植物光合作用和抗逆性的影响[J].南方农业学报,2017,48(5):46-51.WANG Z G,BI Y L,LI Q,et al.Effects of arbuscular mycorrhizal fungus on photosynthesis and stress resistance of reclamation plants in coal mining subsidence areas[J].Journal of Southern Agriculture,2017,48(5):46-51.
    [17] 刘兆娜,郭绍霞,李伟.AM真菌对百合生长和生理特性的影响[J].草业学报,2017,26(11):87-95.LIU Z N,GUO S X,LI W.Effect of arbuscular mycorrhizal fungi on growth and physiological characteristics of Lilium brownii[J].Acta Prataculturae Sinica,2017,26(11):87-95.
    [18] NEVE S D,HOFMAN G.Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues[J].Biology and Fertility of Soils,2000,30(6):544-549.
    [19] 王宪良,王庆杰,李洪文,等.免耕条件下轮胎压实对土壤物理特性和作物根系的影响[J].农业机械学报,2017,48(6):168-175.WANG X L,WANG Q J,LI H W,et al.Effect of tyre induced soil compaction on soil properties and crop root growth under no-tillage system[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(6):168-175.
    [20] 杨海霞,刘润进,郭绍霞.AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响[J].草业学报,2014,23(4):195-203.YANG H X,LIU R J,GUO S X.Effects of arbuscular mycorrhizal fungus Glomus mosseae on the growth characteristics of Festuca arundinacea under salt stress conditions[J].Acta Prataculturae Sinica,2014,23(4):195-203.
    [21] 徐胜,何兴元,陈玮,等.热锻炼对高羊茅(Festuca arundinacea)和多年生黑麦草(Lolium perenne)抗高温能力的影响[J].生态学报,2006,28(1):162-171.XU S,HE X Y,CHEN W,et al.Effects of heat acclimation on high-temperature stress resistance and heat-tolerance mechanism of Festuca arundinacea and Lolium perenne[J].Acta Ecologica Sinica,2006,28(1):162-171.
    [22] 魏小燕,毕华兴,霍云梅,等.高羊茅草地地表径流系数影响因素研究[J].北京林业大学学报,2017,39(5):82-88.WEI X Y,BI H X,HUO Y M,et al.Study on the factors influencing surface runoff coefficient in Festuca arundinacea grassland[J].Journal of Beijing Forestry University,2017,39(5):82-88.
    [23] 刘炜,周春玲,张雪,等.青岛市城阳区悬铃木根系分布特征及与土壤相关性状的研究[J].江西农业学报,2010,22(5):44-47.LIU W,ZHOU C L,ZHANG X,et al.Study on root distribution characteristics of Platanus and related traits of soil in Chengyang district of Qingdao City[J].Acta Agriculturae Jiangxi,2010,22(5):44-47.
    [24] 李文彬,宁楚涵,徐孟,等.丛枝菌根真菌和高羊茅对压实土壤的改良效应[J].草业学报,2018,27(11):131-141.LI W B,NING C H,XU M,et al.Arbuscular mycorrhizal fungi and Festuca elata can improve fertility of compacted soil[J].Acta Prataculturae Sinica,2018,27(11):131-141.
    [25] 刘润进,陈应龙.菌根学[M].北京:科学出版社,2007:1-447.
    [26] 王学奎.植物生理生化试验原理和技术[M].北京:高等教育出版社,2006:1-298.
    [27] ZHANG T,SHI N,BAI D,et al.Arbuscular mycorrhizal fungi promote the growth of Ceratocarpus arenarius (Chenopodiaceae) with no enhancement of phosphorus nutrition[J].PLoS ONE,2012,7(9):e41151.
    [28] SéRY D J,KOUADJO Z G,VOKO B R,et al.Selecting native arbuscular mycorrhizal fungi to promote cassava growth and increase yield under field conditions[J].Frontiers in Microbiology,2016,7:2063.
    [29] 杨世芳,庞春花,张永清,等.不同施氮水平下丛枝菌根真菌对藜麦生长和根系生理特征的影响[J].西北植物学报,2017,37(7):1 323-1 330.YANG S F,PANG C H,ZHANG Y Q,et al.Growth and physiological characteristics of quinoa inoculated with arbuscular mycorrhizal fungi under different nitrogen levels[J].Acta Botanica Boreali-Occidentalia Sinica,2017,37(7):1 323-1 330.
    [30] 崔晓明,张亚如,张晓军,等.土壤紧实度对花生根系生长和活性变化的影响[J].华北农学报,2016,31(6):131-136.CUI X M,ZHANG Y R,ZHANG X J,et al.Effects of soil compaction on root growth and activity of peanut[J].Acta Agriculturae Boreali-Sinica,2016,31(6):131-136.
    [31] 贺学礼,张焕仕,赵丽莉.不同土壤中水分胁迫和AM真菌对油蒿抗旱性的影响[J].植物生态学报,2008,32(5):994-1 001.HE X L,ZHANG H S,ZHAO L L.Effects of am fungi and water stress on drought resistance of Artemisia ordosica in different soils[J].Journal of Plant Ecology,2008,32(5):994-1 001.
    [32] WU Q S,ZOU Y N,et al.The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth,root system architecture and antioxidant enzyme activities of citrus seedlings [J].Fungal Ecology.2013,6(1):37-43.
    [33] 杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.DU X M,YIN W X,ZHAO Y X,et al.The production and scavenging of reactive oxygen species in plants[J].Chinese Journal of Biotechnology,2001,17(2):121-125.
    [34] 尚庆文,孔祥波,王玉霞,等.土壤紧实度对生姜植株衰老的影响[J].应用生态学报,2008,19(4):782-786.SHANG Q W,KONG X B,WANG Y X,et al.Effects of soil compactness on ginger plant senescence[J].Chinese Journal of Applied Ecology,2008,19(4):782-786.
    [35] 薛娴,许会敏,吴鸿洋,等.植物光合作用循环电子传递的研究进展[J].植物生理学报,2017,53(2):145-158.XU X,XU H M,WU H Y,et al.Research progress of cyclic electron transport in plant photosynthesis[J].Plant Physiology Journal,2017,53(2):145-158.
    [36] 刘爽,吴永波.城市土壤压实对树木叶片叶绿素及光合生理特性的影响[J].生态环境学报,2010,19(1):172-176.LIU S,WU Y B.The impact of soil compaction on chlorophyll and photosynthetic characteristics of trees[J].Ecology and Environmental Sciences,2010,19(1):172-176.
    [37] RUIZ-SáNCHEZ M,AROCA R,MUNOZ Y,et al.Arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress[J].J Plant Physiol,2010,167:862-869.
    [38] BIRHANE E,STERCK FJ,et al.Arbuscular mycorrhizal fungi enhance photosynthesis,water use efficiency,and growth of frankincense seedlings under pulsed water availability conditions [J].Oecologia,2012,169(4):895-904.
    [39] LATEF A A H A,HE C X.Arbuscular mycorrhizal influence on growth,photosynetic pigments,osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress[J].Acta Physiologiae Plantarum,2011,33(4):1 217-1 225.
    [40] FARQUHAR G D,SHARKEY T D.Stomatal conductance and photosynthesis[J].Annual Review of Plant Physiology,1982,33(1):317-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700