用户名: 密码: 验证码:
北方寒区日光温室冬季基质袋培番茄蒸腾量模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of tomato transpiration with nutrient substrate bag-cultivation in solar greenhouse during winter in the cold region of Northern China
  • 作者:罗新兰 ; 王淼 ; 佟国红 ; 张函奇 ; 李英歌 ; 尹佳琪 ; 杨丽桃
  • 英文作者:LUO Xin-lan;WANG Miao;TONG Guo-hong;ZHANG Han-qi;LI Ying-ge;YIN Jia-qi;YANG Li-tao;College of Agronomy,Shenyang Agricultural University;Jinzhou Meterological Bureau;College of Water Conservancy, Shenyang Agricultural University;Inner Mongolia Climate Center;
  • 关键词:北方寒区 ; 日光温室 ; 番茄 ; 基质袋培 ; 蒸腾量 ; 土壤热通量
  • 英文关键词:the northern cold region;;solar greenhouse;;tomato;nutrient substrate bag-cultivation;;transpiration;soil heat flux
  • 中文刊名:干旱地区农业研究
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:沈阳农业大学农学院;锦州市气象局;沈阳农业大学水利学院;内蒙古自治区气候中心;
  • 出版日期:2019-07-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划课题(2017YFD0300401);; 国家高技术研究发展计划(“863”计划)(2013AA102407)
  • 语种:中文;
  • 页:49-56+71
  • 页数:9
  • CN:61-1088/S
  • ISSN:1000-7601
  • 分类号:S626;S641.2
摘要
北方寒区日光温室冬季生产基本无通风,为了探寻室内弱光、高湿、低温及低风速环境下的番茄蒸腾量模拟模型,基于Penman-Monteith(P-M)方程及适应此特定环境的边界层空气动力学阻力、气孔平均阻力、土壤热通量等参数模拟了温室长季节栽培番茄(Lycopersicon esculentum Mill)单株的蒸腾速率并进行了试验验证,揭示了蒸腾速率与净辐射、饱和水汽压差的日变化规律,确定了蒸腾速率与植株上方净辐射的定量关系,检验了土壤热通量取值对蒸腾速率的影响。结果显示:2017-12-11—2018-01-03室内太阳总辐射最大值367 W·m~(-2)、夜晚及阴天相对湿度接近100%、室内风速接近0 m·s~(-1)的情况下,单株植株边界层空气动力学阻力变化范围晴天为147~438 s·m~(-1),阴天为211~365 s·m~(-1);气孔平均阻力晴天69~1 506 s·m~(-1),阴天132~1 151 s·m~(-1);P-M方程模拟的单株番茄逐时蒸腾速率在晴天、阴天中午的平均值分别为0.06、0.02 mm·h~(-1),模拟值与实测值比较,平均相对误差约为10%。研究还表明,单株番茄上方净辐射量的43.5%通过蒸腾作用转化为潜热;试验环境下,土壤热通量的取值变化对蒸腾速率影响不大。研究确定的蒸腾速率估算模型可为北方寒区冬季日光温室基质袋培番茄蒸腾量估算以及水分管理提供参考。
        Crop production in solar greenhouse(CSG) in the cold region of northern China is usually performed under the environment of no ventilation, low light intensity, high humidity, and low temperature. Thus, the crop transpiration is different from those in other kind of greenhouses and in ventilated CSGs. Tomato is the most common crop grown in greenhouses. In this study, a tomato transpiration model based on the Penman-Monteith(P-M) equation, aerodynamic resistance, average stomatal resistance, soil heat flux, and other parameters for the particular environment was used to estimate the transpiration rate of a tomato(Lycopersicon esculentum Mill) and validated by experiments. In this model, aerodynamic resistance model was based on free convection and the stomatal average resistance model was inversed by measured transpiration rate and P-M equation. Heat conduction transfer into soil deep was taken as 0.35 times of net radiation during the daytime and 0.13 times during the nighttime. A sensitivity analysis was conducted for the influence of different soil heat flux on tomato transpiration rates. Based on this model, the study revealed the daily variations of transpiration rate, net radiation, and saturation vapor pressure as well as the quantitative relationship between transpiration rate and net radiation above single plant. The results showed that, during experiment period from December 11, 2017 to January 3, 2018, with a maximum daily solar radiation of 367 W·m~(-2), near 100% relative humidity at night and during cloudy day, nearly 0 m/s air velocity, for single plant, the aerodynamic resistance changes ranged from 147 s·m~(-1) to 438 s·m~(-1) during clear days and from 211 s·m~(-1) to 365 s·m~(-1) in cloudy days; the average resistance of stomatal was from 69 s·m~(-1) to 1 506 s·m~(-1) during clear days and from 132 s·m~(-1) to 1 151 s·m~(-1) in cloudy days. The average transpiration rate of single tomato simulated by the P-M equation was 0.06 mm·h~(-1) at noon on a sunny day and 0.02 mm·h~(-1) at noon on a cloudy day, with about 10% of the Mean Relative Error of simulated values. The results also showed that 43.5% of the net radiation above plant was transformed into latent heat by transpiration and the changes of soil heat flux had insignificant influence on the transpiration rate under current experiment conditions. Thus, the transpiration rate simulation model could be used to estimate single tomato transpiration in winter in the cold region of northern China and also give indication for water management inside CSG.
引文
[1] 董仁,隋福祥,张树辉.应用彭曼公式计算作物需水量[J].黑龙江水利学报,2006,33(2):100-101.
    [2] 董斌,孙宁宁,罗金耀.基于棚内气象数据的冬季大棚番茄蒸腾计算[J].武汉大学学报(工学版),2009,42(5):601-604.
    [3] Allen R G,Pereira L S,Raes D,et al.Crop evapotranspiration:Guidelines for computing crop water requirement [M].Rome:Food and Agriculture Organization of the United Nations,1998.
    [4] Morille B,Migeon C,Bournet P E.Is the Penman-Monteith model adapted to predict crop transpiration under greenhouse conditions?Application to a New Guinea Impatiens crop [J].Scientia Horticulture,2013,(152):80-91.
    [5] Boulard T,Wang S.Greenhouse crop transpiration simulation from external climate conditions [J].Agricultural and Forest Meteorology,2000,100(1):25-34.
    [6] Demrati H,Boulard T,Fatnassi H,et al.Microclimate and transpiration of a greenhouse banana crop [J].Biosystems Engineering,2007,98(1):66-78.
    [7] 罗卫红,汪小旵,戴剑锋,等.南方现代化温室黄瓜冬季蒸腾量与模拟研究[J].植物生态学报,2004,28(1):59-65.
    [8] 汪小旵,罗卫红,丁卫民,等.南方现代化温室黄瓜夏季蒸腾研究[J].中国农业科学,2002,35(11):1390-1395.
    [9] Thierry Boulard,Jean-Claude Roy,Jean-Baptiste Pouillard,et al.Modelling of micrometeorology,canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics [J].Biosystems Engineering,2017,158:110-133.
    [10] Meir Teitel.Diurnal energy-partitioning and transpiration modeling in an insect-proof screenhouse with a tomato crop [J].Biosystems Engineering,2017,160:170-178.
    [11] 彭致功,杨培岭,段爱旺,等.日光温室条件下番茄植株蒸腾规律研究[J].干旱地区农业研究,2004,22(1):62-65.
    [12] 王健,蔡焕杰,李红星,等.日光温室作物蒸发蒸腾量的计算方法研究及其评价[J].灌溉排水学报,2006,25(6):11-14.
    [13] 李霞,王国栋,薛绪掌,等.遮光、密闭环境对番茄植株蒸腾的影响[J].灌溉排水学报,2009,28(1):60-64.
    [14] 刘浩,段爱旺,孙景生,等.基于Penman-Monteith方程的日光温室番茄蒸腾量估算模型[J].农业工程学报,2011,27(9):208-213.
    [15] 吕薇薇,罗新兰,李霞,等.日光温室番茄不同生育期的蒸腾作用及模拟研究[J].东北农业大学学报,2011,42(10):57-61.
    [16] 龚雪文,刘浩,孙景生,等.日光温室番茄不同空间尺度蒸散量变化及主控因子分析[J].农业工程学报,2017,33(8):166-175.
    [17] 伍德林,毛罕平.温室滴灌黄瓜茎流变化规律的试验研究[J].安徽农业科学,2007,35(12):3455-3456,3477.
    [18] Granier A.Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements [J].Tree Physiology,1987,(3):309-320.
    [19] Kell B.Wilson,Paul J.Hanson,Patrick J.Mulholland,et al.A comparison of methods for determining forest evapotranspiration and its components:sap-flow,soil water budget,eddy covariance and catchment water balance [J].Agricultural and Forest Meteorology,2001,(106):153-168.
    [20] Allen S J,Grime V L.Measurements of transpiration from savannah shrubs using sap flow gauges [J].Agricultural and Forest Meteorology,1995,75(1):23-41.
    [21] 刘浩,孙景生,段爱旺,等.温室滴灌条件下番茄植株茎流变化规律试验[J].农业工程学报,2010,26(10):77-82.
    [22] 任乐,罗新兰,李天来,等.日光温室温度对番茄叶面积扩展的影响[J].安徽农业科学,2007,35(9):2610 -2612.
    [23] 冯新灵,张群芳.作物群体的消光系数问题[J].绵阳农专学报,1987,13(1):44-48.
    [24] Monteith J L,Unsworth M H.Principles of environmental physics (2nd ed.)[M].London:Edward Arnold,1990.
    [25] 贺康宁,田阳,张光灿.刺槐日蒸腾过程的Penman-Monteith方程模拟[J].生态学报,2003,23(2):251-258.
    [26] 康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及其应用[M].北京:水利水电出版社,1994.
    [27] Goudriaan J,Van Laar H H.Modelling potential crop growth processes:Textbook with exercises [M].Dordrecht:Kluwer Academic Publishers,1994.
    [28] Pollet S,Bleyaert P,Lemeur R.Application of the Penman-Monteith model to calculate the evapotranspiration of head LETTUCE (Lactuca sativa L.var.capitata) in glasshouse condition [J].Acta Hortic,2000,519:151-161.
    [29] Stanghellini C.Vapour balance [M].Wageningen:Wageningen Pers,1995.
    [30] Campbell G.An introduction to environmental biophysics [M].New York:Springer-Verlag,1977.
    [31] Yang X,Ducharme K M,McAvoy R J,et al.Effect of aerial conditions on heat and mass exchange between plants and air in greenhouse [J].Transactions of the ASAE,1995,38(1):225-229.
    [32] R.de Graaf,J.van den Ende.Transpiration and evapotranspiration of the glasshouse crops [J].Acta Horticultu-rae,1981,119:147-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700