用户名: 密码: 验证码:
药渣生物炭基质联合麦饭石对土壤-黑麦草体系的调控与机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Regulation and Mechanism of a Dregs Biochar Matrix Combined with Maifanite on a Soil-Ryegrass System
  • 作者:肖亮亮 ; 丁园
  • 英文作者:XIAO Liang-liang;DING Yuan;College of Environment and Chemical Engineering,Nanchang Hangkong University;
  • 关键词:中药渣生物炭 ; 麦饭石 ; 土壤 ; 黑麦草 ; ; ; 修复机制
  • 英文关键词:traditional Chinese medicine slag biochar;;maifanite;;soil;;ryegrass;;copper;;cadmium;;repair mechanism
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:南昌航空大学环境与化学工程学院;
  • 出版日期:2019-05-28 11:13
  • 出版单位:环境科学
  • 年:2019
  • 期:10
  • 基金:江西省科技厅自然科学基金项目(20171BAB203033,2015BBF60003)
  • 语种:中文;
  • 页:368-377
  • 页数:10
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X53
摘要
以板蓝根药渣为原料,选择300℃和500℃厌氧裂解制备2种生物炭(BC300和BC500)、BC500载Fe改性炭(FeBC500)、天然麦饭石(MFS)、BC500与MFS等质量组合[BC500∶MFS(1∶1)]、Fe-BC500与MFS等质量组合[Fe-BC500∶MFS(1∶1)]材料为钝化剂,采用室内盆栽实验和等温吸附实验,研究了其对土壤-黑麦草体系的调控效果,并通过比表面孔分布测定(BET)、扫描电镜分析(SEM)、X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)探讨了其机制.结果表明,在添加量为2%(土)时,BC300、BC500、Fe-BC500、MFS、BC500∶MFS(1∶1)和Fe-BC500∶MFS(1∶1)均可显著降低(P <0. 05)黑麦草体内Cu和Cd含量以及显著增加黑麦草的生物量,且黑麦草的叶绿素含量和根系活力均可指示这一效果. BC300处理抑制黑麦草吸收Cu和Cd,增加黑麦草的生物量的效果要优于其他处理,可使黑麦草地下部分Cu和Cd含量分别减少44. 78%和63. 89%,地上部分分别减少76. 34%和53. 40%;地下部分生物量增加327. 22%,地上部分生物量增加504. 11%. Langmuir方程更好地拟合BC300、BC500和Fe-BC500的吸附效果,且对Cu的最大吸附量分别为8. 02、9. 20和8. 82 mg·g~(-1);对Cd的最大吸附量分别为7. 97、8. 51和7. 70 mg·g~(-1). Freundlich方程能更好地拟合MFS的吸附效果,对Cu和Cd的最大吸附量分别为7. 03 mg·g~(-1)和6. 10 mg·g~(-1). BC300和BC500主要通过其表面羟基、羧基、羰基和酯基,Fe-BC500主要通过其表面羟基和铁羟基,MFS主要通过其中Na Al Si3O8和Al2Si2O5(OH)4表面的硅羟基、羟基和羧基分别与Cu和Cd发生配合反应,进而达到钝化修复Cu和Cd污染土壤的效果.因此,药渣生物炭、铁改性药渣生物炭和麦饭石及其组合材料均可被用于Cu和Cd复合污染土壤修复,但修复机制不同.
        An indoor pot experiment and isothermal adsorption experiment were used to examine the regulation of soil-ryegrass system treatments. For the treatments,Banlangen dregs were selected as a raw material alongside two kinds of biochar( BC300,BC500)prepared by pyrolysis at 300℃ and 500℃ under anoxic conditions. Fe was modified by BC500( Fe-BC500),which was then combined with maifanite( MFS) as a passivating agent [BC500∶ MFS( 1∶ 1) and Fe-BC500∶ MFS( 1∶ 1) ]. Surface pore distribution( BET),scanning electron microscopy( SEM),X-ray diffraction( XRD),and Fourier-transform infrared spectroscopy( FTIR) were used in the analyses. The results showed that treatment with BC300,BC500,Fe-BC500,MFS,BC500∶ MFS( 1∶ 1),and Fe-BC500∶ MFS( 1∶ 1)significantly reduced the Cu and Cd content( 2% content in soil) of ryegrass( P < 0. 05) and significantly increased the biomass of ryegrass. This effect could have resulted from the enhanced chlorophyll content and root activity of the ryegrass. The effect of BC300 was better than the other treatments,which reduced the content of Cu and Cd in the roots of ryegrass by 44. 78% and 63. 89%,respectively,and in the aboveground biomass by 76. 34% and 53. 40%,respectively. The biomass of roots was also increased by327. 22%,and the aboveground biomass increased by 504. 11%. The Langmuir equation produced the best fit for adsorption effects of BC300,BC500,and Fe-BC500,for which the maximum adsorption capacity for Cu was 8. 02,9. 20,and 8. 82 mg·g~(-1),respectively.The maximum adsorption capacity for Cd was 7. 97,8. 51,and 7. 70 mg·g~(-1),respectively. The Freundlich equation gave a better fit for the adsorption of MFS. In this case,the maximum adsorption capacity for Cu and Cd was 7. 03 mg·g~(-1) and 6. 10 mg·g~(-1),respectively. BC300 and BC500 mainly passes through their surface hydroxyl,carboxyl,carbonyl,and ester groups; Fe-BC500 mainly passes through its surface hydroxyl group and iron hydroxyl group; MFS mainly passes through its silicon hydroxyl group,hydroxyl group,and carboxyl group on the surface of Na Al Si3 O8 and Al2 Si2 O5( OH)4 and then to repair passivated Cu and Cd contaminated soil effect. Therefore,Banlangen dregs biochar,iron-modified Banlangen dregs biochar,maifanite,and the combination of these materials can be used for the remediation of Cu and Cd contaminated soils,although the mechanism of remediation is different.
引文
[1] Zhou Y F,Haynes R J. Sorption of heavy metals by inorganic and organic components of solid wastes:significance to use of wastes as low-cost adsorbents and immobilizing agents[J].Critical Reviews in Environmental Science and Technology,2010,40(11):909-977.
    [2] Chan K Y,Van Zwieten L,Meszaros I,et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Australia Journal of Soil Research,2007,45(8):629-634.
    [3]梁霞,王学江.活性炭改性方法及其在水处理中的应用[J].水处理技术,2011,37(8):1-6.Liang X, Wang X J. The technology of activated carbon modification and its application in wastewater treatment[J].Technology of Water Treatment,2011,37(8):1-6.
    [4]伍喜庆,黄志华.改性活性炭吸附金的性能[J].中国有色金属学报,2005,15(1):129-132.Wu X Q,Huang Z H. Adsorption of gold on modified activated carbon[J]. Chinese Journal of Nonferrous Metals,2005,15(1):129-132.
    [5]高瑞丽,唐茂,付庆灵,等.生物炭、蒙脱石及其混合添加对复合污染土壤中重金属形态的影响[J].环境科学,2017,38(1):361-367.Gao R L,Tang M,Fu Q L,et al. Fractions transformation of heavy metals in compound contaminated soil treated with biochar,montmorillonite and mixed addition[J]. Environmental Science,2017,38(1):361-367.
    [6]陈展祥,陈传胜,陈卫平,等.凹凸棒石及其改性材料对土壤镉生物有效性的影响与机制[J].环境科学,2018,39(10):4744-4751.Chen Z X,Chen C S,Chen W P,et al. Effect and mechanism of attapulgite and its modified materials on bioavailability of cadmium in soil[J]. Environmental Science,2018,39(10):4744-4751.
    [7]曾燕君,周志军,赵秋香.蒙脱石-OR-SH复合体材料对土壤镉的钝化及机制[J].环境科学,2015,36(6):2314-2319.Zeng Y J, Zhou Z J, Zhao Q X. Mechanism study of the smectite-OR-SH compound for reducing cadmium uptake by plants in contaminated soils[J]. Environmental Science,2015,36(6):2314-2319.
    [8]孙向辉,蔡寒玉,丁军.黏土矿物钝化修复重金属污染农田土壤研究进展[J].安徽农业科学,2018,46(32):7-9,13.Sun X H,Cai H Y,Ding J. Research progress on immobilization remediation of the heavy metal contaminated farmland soil with clay mineral materials[J]. Journal of Anhui Agricultural Sciences,2018,46(32):7-9,13.
    [9]肖亮亮,丁园.药渣生物炭联合麦饭石对铜镉污染土壤修复研究[J].环境科学与技术,2019,42(2):145-150.Xiao L L,Ding Y. Study on remediation of Cu and Cd in contaminated soil with the combination of biochar and maifanite[J]. Environmental Science&Technology,2019,42(2):145-150.
    [10]闫震,聂继云,程杨,等.水果、蔬菜及其制品中叶绿素含量的测定[J].中国果树,2018,(2):59-62,72.
    [11]张志良,瞿伟菁,李小方.植物生理学实验指导[M].(第四版).北京:高等教育出版社,2009.
    [12] GB/T 5009. 13-2003,食品中铜的测定[S].
    [13] Wang X H,Zheng Y A,Wang A Q. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites[J]. Journal of Hazardous Materials,2009,168(2-3):970-977.
    [14] Foo K Y,Hameed B H. Insights into the modeling of adsorption isotherm systems[J]. Chemical Engineering Journal,2010,156(1):2-10.
    [15]刘廷志,田胜艳,商平,等.蒙脱石吸附Cr3+、Cd2+、Cu2+、Pb2+、Zn2+的研究:pH值和有机酸的影响[J].生态环境,2005,14(3):353-356.Liu T Z,Tian S Y,Shang P,et al. Adsorption of heavy metals on Na-montmorillonite:Effects of pH and organic acid[J].Ecology and Environment,2005,14(3):353-356.
    [16]林珈羽,童仕唐.生物炭的制备及其性能研究[J].环境科学与技术,2015,38(12):54-58.Lin J Y,Tong S T. Preparation and properties of biochar[J].Environmental Science and Technology,2015,38(12):54-58.
    [17] Li G T, Zhu W Y, Zhu L F, et al. Effect of pyrolytic temperature on the adsorptive removal of p-benzoquinone,tetracycline,and polyvinyl alcohol by the biochars from sugarcane bagasse[J]. Korean Journal of Chemical Engineering,2016,33(7):2215-2221.
    [18] Atkinson C J,Fitzgerald J D,Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:a review[J]. Plant and Soil,2010,337(1-2):1-18.
    [19]唐登勇,黄越,胥瑞晨,等.改性芦苇生物炭对水中低浓度磷的吸附特征[J].环境科学,2016,37(6):2195-2201.Tang D Y,Huang Y,Xu R C,et al. Adsorption behavior of low concentration phosphorus from water onto modified reed biochar[J]. Environmental Science,2016,37(6):2195-2201.
    [20]张江生.有色金属矿区污染土壤中重金属化学固定研究[D].长沙:中南大学,2014.
    [21] Li A,Wang A Q,Chen J M. Studies on poly(acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization[J]. Journal of Applied Polymer Science,2004,92(3):1596-1603.
    [22] Zhang L C,Luo L,Zhang S Z. Integrated investigations on the adsorption mechanisms of fulvic and humic acids on three clay minerals[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,406:84-90.
    [23]郑庆福,王志民,陈保国,等.制备生物炭的结构特征及炭化机理的XRD光谱分析[J].光谱学与光谱分析,2016,36(10):3355-3359.Zheng Q F,Wang Z M,Chen B G,et al. Analysis of XRD spectral structure and carbonization of the biochar preparation[J]. Spectroscopy and Spectral Analysis,2016,36(10):3355-3359.
    [24] Gaskin J W, Steiner C, Harris K, et al. Effect of lowtemperature pyrolysis conditions on biochar for agricultural use[J]. Transactions of the ASABE,2008,51(6):2061-2069.
    [25]王红,夏雯,卢平,等.生物炭对土壤中重金属铅和锌的吸附特性[J].环境科学,2017,38(9):3944-3952.Wang H,Xia W,Lu P,et al. Adsorption characteristics of biochar on heavy metals(Pb and Zn)in soil[J]. Environmental Science,2017,38(9):3944-3952.
    [26]王林,徐应明,梁学峰,等.新型杂化材料钝化修复镉铅复合污染土壤的效应与机制研究[J].环境科学,2011,32(2):581-588.Wang L,Xu Y M,Liang X F,et al. Effect and mechanism of immobilization of cadmium and lead compound contiminated soil using new hybrid material[J]. Environmental Science,2011,32(2):581-588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700