用户名: 密码: 验证码:
5种典型有机磷酸酯在水-土壤界面吸附特征及影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Absorption Characterization and the Identification of Factors Influencing Five Organophosphate Esters in Water-Soil System
  • 作者:何明靖 ; 杨志 ; 魏世强
  • 英文作者:HE Ming-jing;YANG Zhi-hao;WEI Shi-qiang;College of Resources and Environment,Southwest University;Chongqing Key Laboratory of Agricultural Resources and Environment;
  • 关键词:有机磷酸酯(OPEs) ; 水-土壤界面 ; 吸附特征 ; 温度 ; 溶解性有机碳
  • 英文关键词:organophosphate esters(OPEs);;water-soil system;;absorption characterization;;temperature;;dissolved carbon
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:西南大学资源环境学院;重庆市农业资源与环境研究重点实验室;
  • 出版日期:2019-05-28 11:13
  • 出版单位:环境科学
  • 年:2019
  • 期:10
  • 基金:国家重点研发计划项目(2018YFD0800600-03);; 国家自然科学基金项目(41403078);; 重庆市基础科学与前沿技术研究专项(cstc2018jcyjA0977)
  • 语种:中文;
  • 页:304-310
  • 页数:7
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X592
摘要
本研究通过模拟5种典型有机磷酸酯(OPEs)在水-土壤界面吸附过程,建立了3种土壤对OPEs的等温吸附方程,并探讨了不同的温度和溶解性有机碳(DOC)浓度对吸附过程的影响.结果表明,5种OPEs单体均能在吸附进行12 h后达到吸附平衡; 5种单体均能较好地符合Freundlich吸附等温方程,决定系数R2范围为0. 963~0. 995;相关性分析表明,结构相似单体的平衡分配系数(Kd)值具有显著相关性(P <0. 05),说明表明除了理化性质,分子结构也是影响Kd值的因素之一.温度和DOC对吸附影响的研究表明,温度对本研究中的5种单体的Kd值影响较为显著,随着温度升高,Kd值均呈现出下降的趋势;磷酸三(2-丁氧基乙基)酯(TBEP)和磷酸三(1,3-二氯-1-丙基)酯(TDCP)的Kd值是受DOC影响最为显著的两类单体,均表现出先迅速降低然后再升高的趋势,而其他几种OPEs单体的Kd值随着DOC的增大并未表现出明显的增高或减少的趋势.
        In this study,the absorption behavior of five organophosphate esters( OPEs) congeners was monitored in a water-soil system,and three absorption isotherm equations were modeled. Furthermore,the factors influencing the absorption process including temperature and dissolved organic carbon( DOC) were also investigated. The results showed that an equilibrium state was reached after12 hours of absorption for these five OPEs congeners,which could be appropriately modeled by the Freundlich isotherm equations with R2 values ranging from 0. 963 to 0. 995. Significant correlations were observed among the Kd( partitioning coefficient) values and similar chemical structures of OPEs. The Kdvalues decreased with increasing temperature,indicating the significant role played by temperature. TBEP and TDCP were highly impacted by the DOC content,and for the other OPEs congeners,no clear tendency in Kd values was found with increasing of DOC content.
引文
[1] Pantelaki I, Voutsa D. Organophosphate flame retardants(OPFRs):a review on analytical methods and occurrence in wastewater and aquatic environment[J]. Science of the Total Environment,2019,649:247-263.
    [2] Zheng X B,Xu F C,Luo X J,et al. Phosphate flame retardants and novel brominated flame retardants in home-produced eggs from an e-waste recycling region in China[J]. Chemosphere,2016,150:545-550.
    [3] Wei G L,Li D Q,Zhuo M N,et al. Organophosphorus flame retardants and plasticizers:sources, occurrence, toxicity and human exposure[J]. Environmental Pollution,2015,196:29-46.
    [4] Castro-Jiménez J, Berrojalbiz N, Pizarro M, et al.Organophosphate ester(OPE)flame retardants and plasticizers in the open Mediterranean and Black Seas atmosphere[J].Environmental Science&Technology,2014,48(6):3203-3209.
    [5] Mizouchi S,Ichiba M,Takigami H,et al. Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses[J].Chemosphere,2015,123:17-25.
    [6] Zeng X Y,He L X,Cao S X,et al. Occurrence and distribution of organophosphate flame retardants/plasticizers in wastewater treatment plant sludges from the Pearl River delta,China[J].Environmental Toxicology and Chemistry,2014,33(8):1720-1725.
    [7] Andresen J A,Grundmann A,Bester K. Organophosphorus flame retardants and plasticisers in surface waters[J]. Science of the Total Environment,2004,332(1-3):155-166.
    [8] Cristale J, Lacorte S. Development and validation of a multiresidue method for the analysis of polybrominated diphenyl ethers,new brominated and organophosphorus flame retardants in sediment,sludge and dust[J]. Journal of Chromatography A,2013,1305:267-275.
    [9] Peverly A A,O'Sullivan C,Liu L Y,et al. Chicago's Sanitary and Ship Canal sediment:polycyclic aromatic hydrocarbons,polychlorinated biphenyls, brominated flame retardants, and organophosphate esters[J]. Chemosphere,2015,134:380-386.
    [10] Kim J W,Isobe T,Chang K H,et al. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines[J]. Environmental Pollution,2011,159(12):3653-3659.
    [11] Cequier E,Sakhi A K,MarcéR M,et al. Human exposure pathways to organophosphate triesters-a biomonitoring study of mother-child pairs[J]. Environment International,2015,75:159-165.
    [12] Liu L Y,He K,Hites R A,et al. Hair and nails as noninvasive biomarkers of human exposure to brominated and organophosphate flame retardants[J]. Environmental Science&Technology,2016,50(6):3065-3073.
    [13] van der Veen I, de Boer J. Phosphorus flame retardants:properties,production,environmental occurrence,toxicity and analysis[J]. Chemosphere,2012,88(10):1119-1153.
    [14] Meeker J D,Cooper E M,Stapleton H M,et al. Urinary metabolites of organophosphate flame retardants:temporal variability and correlations with house dust concentrations[J].Environmental Health Perspectives,2013,121(5):580-585.
    [15] Zhao F R, Wan Y, Zhao H Q, et al. Levels of blood organophosphorus flame retardants and association with changes in human sphingolipid homeostasis[J]. Environmental Science&Technology,2016,50(16):8896-8903.
    [16]王文兴,童莉,海热提.土壤污染物来源及前沿问题[J].生态环境,2005,14(1):1-5.Wang W X,Tong L,Hairet. The sources and forward problems of soil pollutants[J]. Ecology and Environment,2005,14(1):1-5.
    [17]王伟.疏水性有机污染物在水-土/沉积物体系中的环境行为与归趋[D].杭州:浙江大学,2011.
    [18] Cristale J,álvarez-Martín A,Rodríguez-Cruz S,et al. Sorption and desorption of organophosphate esters with different hydrophobicity by soils[J]. Environmental Science and Pollution Research,2017,24(36):27870-27878.
    [19]李竺.多环芳烃在黄浦江水体的分布特征及吸附机理研究[D].上海:同济大学,2007.
    [20] Weber W J,Mc Ginley P M,Katz L E. A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments[J]. Environmental science&technology,1992,26(10):1955-1962.
    [21] Weber W J,Huang W L. A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions[J]. Environmental Science&Technology,1996,30(3):881-888.
    [22] Young T M,Weber Jr W J. A distributed reactivity model for sorption by soils and sediments. 3. Effects of diagenetic processes on sorption energetics[J]. Environmental Science&Technology,1995,29(1):92-97.
    [23] Mc Ginley P M,Katz L E,Weber W J. A distributed reactivity model for sorption by soils and sediments. 2. Multicomponent systems and competitive effects[J]. Environmental Science&Technology,1993,27(8):1524-1531.
    [24] Pang L,Liu J F,Yin Y G,et al. Evaluating the sorption of organophosphate esters to different sourced humic acids and its effects on the toxicity to Daphnia magna[J]. Environmental Toxicology and Chemistry,2013,32(12):2755-2761.
    [25] Pang L,Yang P J,Yang H Q,et al. Application of Fe3O4@MIL-100(Fe)core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter(DOM)[J]. Science of the Total Environment,2018,626:42-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700