用户名: 密码: 验证码:
附着物对冬季菹草叶绿素荧光活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of epiphyton on chlorophyll fluorescence parameters of crisp pondweed Potamogeton crispus in winter
  • 作者:周彦锋 ; 王晨赫 ; 赵凯 ; 徐东坡
  • 英文作者:ZHOU Yan-feng;WANG Chen-he;ZHAO Kai;XU Dong-po;Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences;Wuxi Fisheries College, Nanjing Agriculture University;College of Resource and Environment, Anqing Normal University;
  • 关键词:水生植物 ; 附着物 ; 菹草 ; 低温 ; 叶绿素荧光
  • 英文关键词:aquatic plant;;periphyton;;Potamogeton crispus;;low temperature;;chlorophyll fluorescence
  • 中文刊名:大连海洋大学学报
  • 英文刊名:Journal of Dalian Ocean University
  • 机构:农业农村部长江下游渔业资源环境科学观测实验站中国水产科学研究院淡水渔业研究中心;南京农业大学无锡渔业学院;安庆师范大学资源环境学院;
  • 出版日期:2019-03-27 09:12
  • 出版单位:大连海洋大学学报
  • 年:2019
  • 期:02
  • 基金:中央级公益性科研院所基本科研业务费专项(2015JBFM03);; 公益性行业(农业)科研专项(201303056-2)
  • 语种:中文;
  • 页:79-83
  • 页数:5
  • CN:21-1575/S
  • ISSN:2095-1388
  • 分类号:Q945.11
摘要
为探究附着物去除对低温环境下菹草Potamogeton crispus的胁迫作用及其变化,选择全球分布最广且冬季生长的菹草为研究对象,于2016年1月14—19日通过原位测量的方法,对比某静水池塘沉水植物茎叶表面附着物去除前后菹草叶片叶绿素荧光参数的变化情况。结果表明,与未去除附着物的对照组菹草叶片相比,去除附着物的处理组菹草叶片的最大光量子产量(Fv/Fm)仅在第一天随光合辐射强度的增加呈下降趋势,但相对电子传递速率(rETR)值仅在第一天随光合辐射强度的增加呈下降趋势,从试验第2天开始就逐渐恢复到与对照组相近水平(P>0.05)。研究表明,菹草本身对于附着物去除的适应能力可能非常迅速,而在低温环境下,附着物的遮光作用对低温条件下菹草易发的光抑制现象是一种保护。
        Changes in chlorophyll fluorescence parameters were in situ measured on surface of leaf and stem in crisp pondweed Potamogeton crispus, as wide distribution and growing in winter submerged macrophyte, exposed to epiphyton and removal of the epiphyton on January 14-19, 2016 to evaluate the impact of epiphyton on photosynthesis of crisp pondweed under low temperature environment. It was found that the maximum photon quantum yield(Fv/Fm) was significantly decreased on the treated leaves after the removal of attachments compared with the untreated leaves(P<0.05). However, the relative electron transfer rate(rETR) was decreased only on the first day with the increase in photosynthetic radiation, and decrease in the value of rETR was observed only on the first day, and gradually recovered from the second day of the experiment to same level in the control group(P>0.05). The findings indicate that crisp pondweed has very rapid adaptability of epiphyton removal, especially the shading effect of periphyton being a kind of protection to the photoinhibition of crisp pondweed in low temperature environment.
引文
[1] Bornette G,Puijalon S.Response of aquatic plants to abiotic factors:a review[J].Aquatic Sciences,2011,73(1):1-14.
    [2] Batzer D P,Palik B J.Variable response by aquatic invertebrates to experimental manipulations of leaf litter input into seasonal woodland ponds[J].Fundamental and Applied Limnology,2007,168(2):155-162.
    [3] Kolada A.The use of aquatic vegetation in lake assessment:testing the sensitivity of macrophyte metrics to anthropogenic pressures and water quality[J].Hydrobiologia,2010,656(1):133-147.
    [4] Kreiling R M,Richardson W B,Cavanaugh J C,et al.Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake:the role of rooted aquatic vegetation[J].Biogeochemistry,2011,104(1-3):309-324.
    [5] Pip E.The ecology of Potamogeton species in central North America[J].Hydrobiologia,1987,153(3):203-216.
    [6] Vis C,Hudon C,Carignan R.Influence of the vertical structure of macrophyte stands on epiphyte community metabolism[J].Canadian Journal of Fisheries and Aquatic Sciences,2006,63(5):1014-1026.
    [7] Neely R K,Wetzel R G.Simultaneous use of 14C and 3H to determine autotrophic production and bacterial protein production in periphyton[J].Microbial Ecology,1995,30(3):227-237.
    [8] Sims A,Zhang Yanyan,Gajaraj S,et al.Toward the development of microbial indicators for wetland assessment[J].Water Research,2013,47(5):1711-1725.
    [9] Aloi J E.A critical review of recent freshwater periphyton field methods[J].Canadian Journal of Fisheries and Aquatic Sciences,1990,47(3):656-670.
    [10] K?hler J,Hacho? J,Hilt S.Regulation of submersed macrophyte biomass in a temperate lowland river:interactions between shading by bank vegetation,epiphyton and water turbidity[J].Aquatic Botany,2010,92(2):129-136.
    [11] Phillips G L,Eminson D,Moss B.A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters[J].Aquatic Botany,1978,4:103-126.
    [12] Qin Baoqiang,Yang Liuyan,Chen Feizhou,et al.Mechanism and control of lake eutrophication[J].Chinese Science Bulletin,2006,51(19):2401-2412.
    [13] 李强,王国祥.冬季降温对菹草叶片光合荧光特性的影响[J].生态环境,2008,17(5):1754-1758.
    [14] 李文朝.富营养水体中常绿水生植被组建及净化效果研究[J].中国环境科学,1997,17(1):53-57.
    [15] 李英杰,许秋瑾,金相灿,等.湖泊水生植被恢复物种选择及群落配置分析[J].环境污染治理技术与设备,2004,5(8):23-26.
    [16] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002:670-671.
    [17] 吴晓东,王国祥,李振国,等.干旱胁迫对香蒲生长和叶绿素荧光参数的影响[J].生态与农村环境学报,2012,28(1):103-107.
    [18] Küster A,Altenburger R.Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species[J].Chemosphere,2007,67(1):194-201.
    [19] 韩博平,韩志国,付翔.藻类光合作用机理与模型[M].北京:科学出版社,2003.
    [20] Greer D H,Berry J A,Bj?rkman O.Photoinhibition of photosynthesis in intact bean leaves:role of light and temperature,and requirement for chloroplast-protein synthesis during recovery[J].Planta,1986,168(2):253-260.
    [21] Greer D H,Ottander C,?qust G.Photoinhibition and recovery of photosynthesis in intact barley leaves at 5 and 20 ℃[J].Plant Physiology,1991,81(2):203-210.
    [22] Küster A,Schaible R,Schubert H.Light acclimation of photosynthesis in three charophyte species[J].Aquatic Botany,2004,79(2):111-124.
    [23] Madsen T V.Growth and photosynthetic acclimation by Ranunculus aquatilis L.in response to inorganic carbon availability[J].New Phytologist,1993,125(4):707-715.
    [24] Bowes G,Salvucci M E.Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes[J].Aquatic Botany,1989,34(1-3):233-266.
    [25] Van T K,Haller W T,Bowes G.Comparison of the photosynthetic characteristics of three submersed aquatic plants[J].Plant Physiology,1976,58(6):761-768.
    [26] Lucas W J,Berry J A.Inorganic carbon transport in aquatic photosynthetic organisms[J].Physiologia Plantarum,1985,65(4):539-543.
    [27] Duarte C M.Seagrass depth limits[J].Aquatic Botany,1991,40(4):363-377.
    [28] 魏宏农,潘建林,赵凯,等.菹草附着物对营养盐浓度的响应及其与菹草衰亡的关系[J].生态学报,2013,33(24):7661-7666.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700