用户名: 密码: 验证码:
沉降除藻协同沉积物覆盖对藻华水体甲烷释放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synergy of Algal Sedimentation and Sediment Capping for Methane Emission Control in Bloom Waters
  • 作者:朱琳 ; 于江华 ; 施文卿 ; 易齐涛 ; 曹华勇 ; 蒲寅羽
  • 英文作者:ZHU Lin;YU Jiang-hua;SHI Wen-qing;YI Qi-tao;CAO Hua-yong;PU Yin-yu;Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control,School of Environmental Science &Engineering,Nanjing University of Information Science & Technology;Center for Eco-environmental Research,Nanjing Hydraulic Research Institute;School of Earth and Environment,Anhui University of Science and Technology;
  • 关键词:甲烷 ; 藻华 ; 沉降除藻 ; 沉积物覆盖 ; 氧化还原电位
  • 英文关键词:methane;;algal bloom;;algal sedimentation;;sediment capping;;redox potential
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:南京信息工程大学环境科学与工程学院江苏省大气环境监测与污染控制高技术研究重点实验室;南京水利科学研究院生态环境研究中心;安徽理工大学地球与环境学院;
  • 出版日期:2019-04-28 15:38
  • 出版单位:环境科学
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金项目(41701112);; 南京信息工程大学启动经费项目(20181015)
  • 语种:中文;
  • 页:392-397
  • 页数:6
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X52
摘要
本研究以藻华水体甲烷释放为对象,利用模拟柱培养实验,探究了沉降除藻和沉积物覆盖复合技术对富营养化甲烷释放的影响.结果表明,沉降除藻结合沉积物覆盖处理可有效改善水环境,实现对甲烷释放的控制,但不同覆盖材料的效果存在差异;活性炭效果要优于土壤和沸石.相比于对照体系水体溶解氧(DO)<2. 5 mg·L-1和氧化还原电位(ORP)<100 m V,沉积物界面ORP <-125 m V,沉降除藻协同活性炭覆盖体系中水体DO和ORP分别升高至3. 1 mg·L-1和174 m V,沉积物界面ORP逆转为168 m V,实验期间甲烷释放量相对于对照组减少90. 2%.研究结果在富营养水体甲烷减排方面具有指导性意义.
        This study tested a strategy in simulated column systems to control methane emissions from algal bloom waters using the combined technology of algae sedimentation and sediment capping. The results demonstrated that the synergy of algal sedimentation and sediment capping can effectively improve the water environment and reduce methane emissions; however,the improvement rate differed among capping materials. The use of activated carbon yielded better performance on the water environment improvement and methane emission control than soil and zeolite. Compared with the control system,the dissolved oxygen and redox potential in the water were increased from < 2. 5 mg·L-1 to 3. 1 mg·L-1 and from < 100 m V to 174 m V,respectively. In addition,the redox potential in the surface sediment was reversed from-125 m V to 168 m V after algal sedimentation with subsequent activated carbon capping. As a result,methane emissions in the algal sedimentation-activated carbon capping systems were decreased by 90. 2% over the incubation period relative to the control system. This study provides useful insights into methane emission control in eutrophic waters.
引文
[1] Min S K,Zhang X B,Zwiers F W,et al. Human contribution to more-intense precipitation extremes[J]. Nature,2011,470(7334):378-381.
    [2] Tollefson J. Heatwaves blamed on global warming[J]. Nature,2012,488(7410):143-144.
    [3] Smith K R,Desai M A,Rogers J V,et al. Joint CO2and CH4accountability for global warming[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(31):E2865-E2874.
    [4] Wuebbles D J,Hayhoe K. Atmospheric methane and global change[J]. Earth-Science Reviews,2002,57(3-4):177-210.
    [5]贾磊,蒲旖旎,杨诗俊,等.太湖藻型湖区CH4、CO2排放特征及其影响因素分析[J].环境科学,2018,39(5):2316-2329.Jia L,Pu Y N,Yang S J,et al. Analysis of greenhouse gas emission characteristics and their influencing factors in the algae zone of Lake Taihu[J]. Environmental Science,2018,39(5):2316-2329.
    [6]赵静,张桂玲,吴莹,等.长江中溶存甲烷的分布与释放[J].环境科学,2011,32(1):18-25.Zhao J,Zhang G L,Wu Y,et al. Distribution and emission of methane from the changjiang[J]. Environmental Science,2011,32(1):18-25.
    [7] West W E,Creamer K P,Jones S E. Productivity and depth regulate lake contributions to atmospheric methane[J].Limnology and Oceanography,2016,61(S1):S51-S61.
    [8] Zhou Y Q,Xiao Q T,Yao X L,et al. Accumulation of terrestrial dissolved organic matter potentially enhances dissolved methane levels in eutrophic lake Taihu, China[J]. Environmental Science&Technology,2018,52(18):10297-10306.
    [9] Gülzow W,Grwe U,Kedzior S,et al. Seasonal variation of methane in the water column of Arkona and Bornholm Basin,western Baltic Sea[J]. Journal of Marine Systems,2014,139:332-347.
    [10]龙丽,肖尚斌,张成,等.亚热带浅水池塘水-气界面甲烷通量特征[J].环境科学,2016,37(12):4552-4559.Long L,Xiao S B,Zhang C,et al. Characteristics of methane flux across the water-air interface in subtropical shallow ponds[J]. Environmental Science,2016,37(12):4552-4559.
    [11]张军伟,雷丹,肖尚斌,等.三峡库区香溪河秋末至中冬CO2和CH4分压特征分析[J].环境科学,2016,37(8):2924-2931.Zhang J W,Lei D,Xiao S B,et al. Partial pressure of carbon dioxide and methane from autumn to winter in xiangxi bay of the Three Gorges Reservoir[J]. Environmental Science,2016,37(8):2924-2931.
    [12]彭文杰,李强,宋昂,等.五里峡水库初级生产力对水气界面二氧化碳和甲烷排放速率时空变化的影响[J].环境科学,2018,39(6):2673-2679.Peng W J,Li Q,Song A,et al. Spatial-temporal variations of CO2and CH4flux through a water-air interface under the effect of primary productivity in Wulixia reservoir[J]. Environmental Science,2018,39(6):2673-2679.
    [13] Pan G,Yang B,Wang D,et al. In-lake algal bloom removal and submerged vegetation restoration using modified local soils[J].Ecological Engineering,2011,37(2):302-308.
    [14] Pan G,Dai L C,Li L,et al. Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes[J]. Environmental Science&Technology,2012,46(9):5077-5084.
    [15]邹华,潘纲,陈灏.壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除[J].环境科学,2004,25(6):40-43.Zou H,Pan G,Chen H. Flocculation and removal of water bloom cells Microcystis aeruginosa by chitosan-modified clays[J]. Environmental Science,2004,25(6):40-43.
    [16]王伟颖,吕昌伟,何江,等.湖泊水-沉积物界面DIC和DOC交换通量及耦合关系[J].环境科学,2015,36(10):3674-3682.Wang W Y,LüC W,He J,et al. Exchange fluxes and coupling relationship of dissolved inorganic carbon and dissolved organic carbon across the water-sediment interface in lakes[J].Environmental Science,2015,36(10):3674-3682.
    [17] Duchemin E, Lucotte M, Canuel R. Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies[J].Environmental Science&Technology,1999,33(2):350-357.
    [18]卢春兰,朱波,张晓琳.木质活性炭对苯的吸附/脱附性能研究[J].环境科学与技术,2017,40(S1):12-15.Lu C L,Zhu B,Zhang X L. Study of benzene adsorption/desorption of wooden activated carbons[J]. Environmental Science&Technology,2017,40(S1):12-15.
    [19]莫德清,叶代启.活性碳纤维表面改性及其在气体净化中的应用[J].环境科学与技术,2008,31(9):77-81,98.Mo D Q,Ye D Q. Surface property modification of activated carbon fiber and its application to gas purification[J].Environmental Science&Technology,2008,31(9):77-81,98.
    [20] Sircar S,Golden T C,Rao M B. Activated carbon for gas separation and storage[J]. Carbon,1996,34(1):1-12.
    [21] Van Dam B R,Tobias C,Holbach A,et al. CO2limited conditions favor cyanobacteria in a hypereutrophic lake:An empirical and theoretical stable isotope study[J]. Limnology and Oceanography,2018,63(4):1643-1659.
    [22]郭莹莹,陈坚,尹希杰,等.九龙江河口表层水体及沉积物中甲烷的分布和环境控制因素研究[J].环境科学,2012,33(2):558-564.Guo Y Y,Chen J,Yin X J,et al. Spatial distribution of methane in surface water and sediment of Jiulongjiang Estuary and the effect environment factors of it[J]. Environmental Science,2012,33(2):558-564.
    [23] Maeck A,Del Sontro T,Mc Ginnis D F,et al. Sediment trapping by dams creates methane emission hot spots[J]. Environmental Science&Technology,2013,47(15):8130-8137.
    [24] Xiao S B,Wang Y C,Liu D F,et al. Diel and seasonal variation of methane and carbon dioxide fluxes at Site Guojiaba,the Three Gorges Reservoir[J]. Journal of Environmental Sciences,2013,25(10):2065-2071.
    [25] Billard E,Domaizon I,Tissot N,et al. Multi-scale phylogenetic heterogeneity of archaea, bacteria, methanogens and methanotrophs in lake sediments[J]. Hydrobiologia,2015,751(1):159-173.
    [26] Zhu L,Qin B Q,Zhou J,et al. Effects of turbulence on carbon emission in shallow lakes[J]. Journal of Environmental Sciences,2018,69:166-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700