用户名: 密码: 验证码:
中国重型柴油车后处理技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in the Development of Exhaust Aftertreatment Technologies for HeavyDuty Diesel Vehicles in China
  • 作者:单文坡 ; 余运波 ; 张燕 ; 贺泓
  • 英文作者:SHAN Wenpo;YU Yunbo;ZHANG Yan;HE Hong;Center for Excellence in Regional Atmospheric Environment,Institute of Urban Environment,Chinese Academy of Sciences;State Key Joint Laboratory of Environment Simulation and Pollution Control,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences;
  • 关键词:柴油车 ; 后处理 ; 排放控制 ; 氮氧化物净化 ; 颗粒物净化
  • 英文关键词:diesel vehicle;;aftertreatment;;emission control;;NOxabatement;;PM purification
  • 中文刊名:环境科学研究
  • 英文刊名:Research of Environmental Sciences
  • 机构:中国科学院城市环境研究所中国科学院区域大气环境研究卓越创新中心福建;中国科学院生态环境研究中心环境模拟与污染控制国家重点联合实验室;
  • 出版日期:2019-10-15
  • 出版单位:环境科学研究
  • 年:2019
  • 期:10
  • 基金:国家重点研发计划项目(No.2017YFC0211101,2017YFC0212502);; 国家自然科学基金项目(No.51822811)~~
  • 语种:中文;
  • 页:60-65
  • 页数:6
  • CN:11-1827/X
  • ISSN:1001-6929
  • 分类号:X734.2
摘要
我国柴油车(尤其是重型柴油车)污染问题突出,亟须重点控制.为此,对我国重型柴油车后处理技术的主要研究进展进行了综述与展望.结果显示:我国自柴油车国Ⅳ标准实施以来,后处理技术已经成为柴油车尾气污染控制的必备技术.目前发展出的主要后处理技术包括用于控制CO和HC排放的柴油机氧化催化剂(DOC)、用于控制PM排放的柴油颗粒捕集器(DPF)、用于控制NOx排放的选择性催化还原技术(SCR).我国国Ⅳ和国Ⅴ阶段主要采用SCR技术路线控制重型柴油车污染排放,而国Ⅵ阶段严苛的标准要求为柴油车污染物排放控制带来巨大挑战,需要将多种后处理技术进行耦合,并且需要将后处理系统与发动机系统进行融合.除柴油车新车外,我国在用柴油车也需要有针对性地开展污染治理,主要涉及NOx和PM高效协同减排技术和排放在线监管技术.
        Diesel vehicles,especially heavy-duty diesel vehicles,have caused serious air pollution problems in China. Therefore,the development and application of diesel exhaust aftertreatment technologies in China were reviewed in this paper. Since the implementation of Chinese Ⅳ standard,the aftertreatment technologies have become necessary for the emission control of diesel vehicles. The developed aftertreatment technologies mainly include diesel oxidation catalyst( DOC) for controlling CO and HC emissions,diesel particulate filter( DPF) for PM emission control,and selective catalytic reduction( SCR) for the control of NOxemissions. During the Chinese Ⅳ and Ⅴstages,SCR was the main aftertreatment technology for the emission control ofheavy-duty diesel vehicles. Due to the stringent requirements of Chinese Ⅵ standard,the combination ofdifferent aftertreatment technologies is needed for the emission control,and the aftertreatment system needs to be integrated with the engine system. In addition to new vehicles,the in-use diesel vehicles need targeted emission control,which mainly involves two types of technologies: simultaneous control technology for NOxand PM and on-line monitoring technology for emissions.
引文
[1] WU Y,ZHANG S,LI M,et al. The challenge to NOxemission control for heavy-duty diesel vehicles in China[J]. Atmospheric Chemistry and Physics,2012,12(19):9365-9379.
    [2] ZHENG B,TONG D,LI M,et al.Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J].Atmospheric Chemistry and Physics,2018,18(19):14095-14111.
    [3] WU Y,ZHANG S,HAO J,et al. On-road vehicle emissions and their control in China:a review and outlook[J].Science of the Total Environment,2017,574:332-349.
    [4]贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述[J].环境科学,2007,28(6):1169-1177.HE Hong,WENG Duan,ZI Xinyun. Diesel emission control technologies:a review[J]. Environmental Science,2007,28(6):1169-1177.
    [5] GRANGER P,PARVULESCU V I. Catalytic NOxabatement systems for mobile sources:from three-way to lean burn aftertreatment technologies[J].Chemical Reviews,2011,111(5):3155-3207.
    [6] DHAL G C,DEY S,MOHAN D,et al. Simultaneous abatement of diesel soot and NOxemissions by effective catalysts at low temperature:an overview[J]. Catalysis Reviews:Science and Engineering,2018,60(3):437-496.
    [7] GUAN B,ZHAN R,LIN H,et al.Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines[J].Journal of Environmental Management,2015,154:225-258.
    [8] LEE J,THEIS J R,KYRIAKIDOU E A.Vehicle emissions trapping materials:successes,challenges,and the path forward[J]. Applied Catalysis B:Environmental,2019,243:397-414.
    [9] MOHANKUMAR S,SENTHILKUMAR P. Particulate matter formation and its control methodologies for diesel engine:a comprehensive review[J]. Renewable&Sustainable Energy Reviews,2017,80:1227-1238.
    [10] WALKER A.Future challenges and incoming solutions in emission control for heavy duty diesel vehicles[J]. Topics in Catalysis,2016,59(89):695-707.
    [11] CHENG Y,SONG W Y,LIU J,et al. Simultaneous NOxand particulate matter removal from diesel exhaust by hierarchical Fe-doped Ce-Zr oxide[J].ACS Catalysis,2017,7(6):3883-3892.
    [12] WEI Y,LIU J,ZHAO Z,et al. Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous La Fe O3for soot oxidation[J]. Angewandte ChemieInternational Edition,2011,50(10):2326-2329.
    [13] WU Q,XIONG J,ZHANG Y,et al. Interaction-induced selfassembly of Au@La2O3core-shell nanoparticles on La2O2CO3nanorods with enhanced catalytic activity and stability for soot oxidation[J].ACS Catalysis,2019,9(4):3700-3715.
    [14] LIU T,LI Q,XIN Y,et al. Quasi free K cations confined in hollandite-type tunnels for catalytic solid(catalyst)-solid(reactant)oxidation reactions[J]. Applied Catalysis B:Environmental,2018,232:108-116.
    [15] WANG X,JIN B,FENG R,et al. A robust core-shell silver soot oxidation catalyst driven by Co3O4:effect of tandem oxygen delivery and Co3O4-CeO2synergy[J].Applied Catalysis B:Environmental,2019,250:132-142.
    [16]贺泓,李俊华,上官文峰,等.环境催化:原理及应用[M].北京:科学出版社,2008.
    [17]单文坡,刘福东,贺泓.柴油车尾气中氮氧化物的催化净化[J].科学通报,2014,59(26):2540-2549.SHAN Wenpo,LIU Fudong,HE Hong. Catalytic abatement of NOx from diesel exhaust[J]. Chinese Science Bulletin,2014,59(26):2540-2549.
    [18]贺泓,刘福东,余运波,等.环境友好的选择性催化还原氮氧化物催化剂[J].中国科学:化学,2012,42(4):446-468.HE Hong,LIU Fudong,YU Yunbo,et al. Environmental-friendly catalysts for the selective catalytic reduction of NOx[J]. Scientia Sinica Chemica,2012,42(4):446-468.
    [19] BUSCA G,LIETTI L,RAMIS G,et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOxby ammonia over oxide catalysts:a review[J]. Applied Catalysis B:Environmental,1998,18(12):1-36.
    [20] KOEBEL M,ELSENER M,KLEEMANN M.Urea-SCR:a promising technique to reduce NOxemissions from automotive diesel engines[J].Catalysis Today,2000,59(34):335-345.
    [21]刘福东,单文坡,石晓燕,等.用于NH3选择性催化还原NOx的钒基催化剂[J].化学进展,2012,24(4):445-455.LIU Fudong,SHAN Wenpo,SHI Xiaoyan,et al. Vanadium-based catalysts for the selective catalytic reduction of NOxwith NH3[J].Progress in Chemistry,2012,24(4):445-455.
    [22]刘福东,单文坡,石晓燕,等.用于NH3选择性催化还原NO的非钒基催化剂研究进展[J].催化学报,2011,32(7):1113-1128.LIU Fudong,SHAN Wenpo,SHI Xiaoyan,et al. Research progress in vanadium-free catalysts for the selective catalytic reduction of NO with NH3[J]. Chinese Journal of Catalysis,2011,32(7):1113-1128.
    [23] SHAN W,LIU F,YU Y,et al. The use of ceria for the selective catalytic reduction of NOxwith NH3[J]. Chinese Journal of Catalysis,2014,35(8):1251-1259.
    [24] BRANDENBERGER S,KRCHER O,TISSLER A,et al.The state of the art in selective catalytic reduction of NOxby ammonia using metal-exchanged zeolite catalysts[J]. Catalysis Reviews:Science and Engineering,2008,50(4):492-531.
    [25] LIU F,YU Y,HE H. Environmentally-benign catalysts for the selective catalytic reduction of NOxfrom diesel engines:structureactivity relationship and reaction mechanism aspects[J]. Chemical Communications,2014,50(62):8445-8463.
    [26] SHAN W,LIU F,HE H,et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOxwith NH3[J].Applied Catalysis B:Environmental,2012,115116:100-106.
    [27] LIU F,SHAN W,LIAN Z,et al.The smart surface modification of Fe2O3by WOxfor significantly promoting the selective catalytic reduction of NOxwith NH3[J]. Applied Catalysis B:Environmental,2018,230:165-176.
    [28] SHAN W,SONG H.Catalysts for the selective catalytic reduction of NOxwith NH3at low temperature[J]. Catalysis Science&Technology,2015,5:4280-4288.
    [29] DEKA U,LEZCANO-GONZALEZ I,WECKHUYSEN B M,et al.Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx[J]. ACS Catalysis,2013,3(3):413-427.
    [30] BEALE A M,GAO F,LEZCANO-GONZALEZ I,et al. Recent advances in automotive catalysis for NOxemission control by smallpore microporous materials[J].Chemical Society Reviews,2015,44(20):7371-7405.
    [31] BORFECCHIA E,BEATO P,SVELLE S,et al. Cu-CHA:a model system for applied selective redox catalysis[J]. Chemical Society Reviews,2018,47(22):8097-8133.
    [32] WANG F,MA J,HE G,et al.Nanosize effect of Al2O3in AgAl2O3catalyst for the selective catalytic oxidation of ammonia[J]. ACS Catalysis,2018,8(4):2670-2682.
    [33] HE H,ZHANG X,WU Q,et al. Review of AgAl2O3-reductant system in the selective catalytic reduction of NOx[J]. Catalysis Surveys from Asia,2008,12(1):38-55.
    [34] HE G,LIAN Z,YU Y,et al. Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NOxwith NH3[J].Science Advances,2018,4:4637.
    [35] LIU F,SHAN W,PAN D,et al.Selective catalytic reduction of NOx by NH3for heavy-duty diesel vehicles[J]. Chinese Journal of Catalysis,2014,35(9):1438-1445.
    [36] GAO F,PEDEN C H F. Recent progress in atomic-level understanding of CuSSZ-13 selective catalytic reduction catalysts[J].Catalysts,2018,8:23.
    [37] WANG J,ZHAO H,HALLER G,et al. Recent advances in the selective catalytic reduction of NOxwith NH3on Cu-Chabazite catalysts[J]. Applied Catalysis B:Environmental,2017,202:346-354.
    [38] KWAK J H,TONKYN R G,KIM D H,et al.Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J].Journal of Catalysis,2010,275(2):187-190.
    [39] SCHMIEG S J,OH S H,KIM C H,et al. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOxreduction[J].Catalysis Today,2012,184(1):252-261.
    [40] REN L,ZHU L,YANG C,et al.Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOxby NH3[J].Chemical Communications,2011,47(35):9789-9791.
    [41] XIE L,LIU F,REN L,et al. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOxwith NH3[J].Environmental Science&Technology,2014,48(1):566-572.
    [42] WU Q,MENG X,GAO X,et al.Solvent-free synthesis of zeolites:mechanism and utility[J]. Accounts of Chemical Research,2018,51(6):1396-1403.
    [43] SHAN Y,SHI X,DU J,et al. SSZ-13 synthesized by solvent-free method:a potential candidate for NH3-SCR catalyst with high activity and hydrothermal stability[J]. Industrial&Engineering Chemistry Research,2019,58(14):5397-5403.
    [44] HAUGEN M J,BISHOP G A. Long-term fuel-specific NOxand particle emission trends for in-use heavy-duty vehicles in California[J]. Environmental Science&Technology,2018,52(10):6070-6076.
    [45] PREBLE C V,CADOS T E,HARLEY R A,et al. In-use performance and durability of particle filters on heavy-duty diesel trucks[J]. Environmental Science&Technology,2018,52(20):11913-11921.
    [46] HAUGEN M J,BISHOP G A,THIRUVENGADAM A,et al.Evaluation of heavy-and medium-duty on-road vehicle emissions in California's south coast air basin[J]. Environmental Science&Technology,2018,52(22):13298-13305.
    [47]王燕军.柴油车减排国外实践经验[J].交通建设与管理,2016(22):96-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700