用户名: 密码: 验证码:
1960-2015年秦岭地区极端降水的时空变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and Spatial Variations and Trends of Extreme Precipitation in Qinling Mountains During the Period 1960-2015
  • 作者:孟清 ; 高翔 ; 白红英 ; 张扬 ; 王辉源
  • 英文作者:MENG Qing;GAO Xiang;BAI Hongying;ZHANG Yang;WANG Huiyuan;College of Urban and Environmental Science, Northwest University;Shaanxi Key Laboratory of Surface System and Environmental Carrying Capacity, Northwest University;China Meteorological Administration Public Meteorological Service Centre;
  • 关键词:气候变化 ; 秦岭地区 ; 极端降水 ; 时空变化
  • 英文关键词:climate shift;;Qinling Mountains;;extreme precipitation;;spatiotemporal variation
  • 中文刊名:水土保持研究
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:西北大学城市与环境学院;西北大学陕西省地表系统与环境承载力重点实验室;中国气象局公共气象服务中心;
  • 出版日期:2019-06-28 16:11
  • 出版单位:水土保持研究
  • 年:2019
  • 期:06
  • 基金:国家林业公益性行业科研专项“秦岭天然林气候变化的时空响应及管理对策”(201304309)
  • 语种:中文;
  • 页:175-182+187
  • 页数:9
  • CN:61-1272/P
  • ISSN:1005-3409
  • 分类号:P426.614
摘要
极端降水是气候变化的重要研究内容之一。在全球气候变化背景下,探究秦岭地区的极端降水变化,对于明确区域极端气候差异及探究其机理具有重要的意义。基于秦岭地区1960—2015年29个气象站点降水数据以及秦岭25 m×25 m分辨率的DEM数据集,选取6个极端降水指数,运用最小二乘回归法、Man-Kendall突变检验法、5年滑动趋势法和克里金插值法研究了56年来秦岭地区极端降水的时空变化特征。结果表明:(1)秦岭地区极端降水分布存在明显空间差异性,西北部是年均连续无雨日数高值区,中西部为连续降水日数高值区;强降水日数、强降水量、5日最大降水量和降水强度等指数呈"南高北低"的分布格局,位于秦岭最南端的紫阳县是各个极端降水指数极大值区。(2) 56年来,秦岭地区极端降水的持续性整体呈减少趋势;强度呈增加趋势。秦岭山地降水时间短、强度大,尤其是在秦岭南部地区,应加强防备,以免引起洪水灾害造成的重大破坏。
        Extreme precipitation is one of the important research topics of climate change. Under the background of global climate change, study on the extreme precipitation variation in Qinling Mountains is of great significance for clarifying regional extreme climate difference and exploring its mechanism. Based on the precipitation data of 29 meteorological stations in Qinling Mountains from 1960 to 2015 and the DEM data set with the resolution of 25 m×25 m, six extreme precipitation indices were selected to study the spatial and temporal variation characteristics of extreme precipitation in Qinling Mountains in the past 56 years by using least square regression, Man-Kendall mutation test and 5-year sliding trend method and kriging interpolation method. The conclusions were as follows.(1) There were obvious spatial differences in the distribution of extreme precipitation in Qinling Mountains. The northwest part was the high value area of consecutive dry day(CDD), and the central and western parts were the high value areas of consecutive wet day(CWD). The distribution pattern of number of heavy precipitation days(R10), very wet days(R95 p), max 5-day precipitation amount(RX5 day) and simple daily intensity index(SDII) were high in the south and low in the north. Ziyang County, which is located at the southernmost end of Qinling Mountains, has the maximum value of all extreme precipitation indices.(2) In the past 56 years, the persistence of extreme precipitation in Qinling Mountains has decreased and the intensity has increased as a whole. Precipitation in Qinling Mountains was short and intense, especially in the southern aspect of Qinling Mountains. Relevant departments should strengthen their preparedness so as not to cause major damage caused by flood disasters.
引文
[1] IPCC.Climate Change 2013:the Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovern-mental Panel on Climate Change[R].Cambridge,UK:Cambridge University Press,2013.
    [2] IPCC.Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation:A Special Report of Working Groups Ⅰ and Ⅱ of the Intergovernmental Panel on Climate Change[R].Cambridge,UK:Cambridge University Press,2012.
    [3] Alexander L V,Zhang X,Peterson T C,et al.Global observed changes in daily climate extremes of temperature and precipitation[J].Journal of Geophysical Research Atmospheres,2006,111(D5):1042-1063.
    [4] Donat M G,Alexander L V,Yang H,et al.Global land-based datasets for monitoring climatic extremes[J].Bulletin of the American Meteorological Society,2013,94(7):997-1006.
    [5] Moberg A,Jones P D.Trends in indices for extremes in daily temperature and precipitation in central and western Europe,1901-99[J].International Journal of Climatology,2005,25(9):1149-1171.
    [6] Griffiths M L,Bradley R S.Variations of twentieth-century temperature and precipitation extreme indicators in the northeast United States[J].Journal of Climate,2007,20(21):5401-5417.
    [7] Rosenberg E A,Keys P W,Booth D B,et al.Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State[J].Climatic Change,2010,102(1/2):319-349.
    [8] Tan X,Gan T Y,Shao D.Effects of persistence and large-scale climate anomalies on trends and change points in extreme precipitation of Canada[J].Journal of Hydrology,2017,550:453-465.
    [9] 翟盘茂,潘晓华.中国北方近50年温度和降水极端事件变化[J].地理学报,2003,58(9):1-10.
    [10] 翟盘茂,王志伟,邹旭凯.全国及主要流域极端气候事件变化[M].北京:气象出版社,2007.
    [11] 杨金虎,江志红,王鹏祥,等.中国年极端降水事件的时空分布特征[J].气候与环境研究,2008,13(1):75-83.
    [12] 陈海山,范苏丹,张新华.中国近50 a极端降水事件变化特征的季节性差异[J].大气科学学报,2009,32(6):744-751.
    [13] 宁亮,钱永甫.中国年和季各等级日降水量的变化趋势分析[J].高原气象,2008,27(5):1010-1020.
    [14] 陆虹,何慧,陈思蓉.华南地区1961—2008年夏季极端降水频次的时空变化[J].生态学杂志,2010,29(6):1213-1220.
    [15] 王冀,江志红,严明良,等.1960—2005年长江中下游极端降水指数变化特征分析[J].气象科学,2008,28(4):384-388.
    [16] 王志福,钱永甫.中国极端降水事件的频数和强度特征[J].水科学进展,2009,20(1):1-9.
    [17] 张文,寿绍文,杨金虎,等.近45 a来中国西北汛期降水极值的变化分析[J].干旱区资源与环境,2007,21(12):126-132.
    [18] 刘琳.基于集合预报的中国极端强降水预报方法研究[D].成都:成都信息工程学院,2013.
    [19] 杨勇,杜军,罗骕翾,等.近40 a西藏怒江流域极端降水事件的时空变化[J].干旱区研究,2013,30(2):315-321.
    [20] 贾文雄,张禹舜,李宗省.近50年来祁连山及河西走廊地区极端降水的时空变化研究[J].地理科学,2014,34(8):1002-1009.
    [21] 李双双,杨赛霓,刘宪锋.1960—2013年秦岭—淮河南北极端降水时空变化特征及其影响因素[J].地理科学进展,2015,34(3):354-363.
    [22] 李菲.1962—2011年秦岭南北极端降水事件的时空变化特征及原因分析[D].兰州:西北师范大学,2014.
    [23] 邓晨晖.气候变化背景下秦岭山地物候时空变化及其响应[D].西安:西北大学,2018.
    [24] 黄晓月.秦岭太白红杉NDVI与遥感物候对气候变化的响应[D].西安:西北大学,2018.
    [25] 蒋冲,王飞,喻小勇,等.秦岭南北近地面水汽时空变化特征[J].生态学报,2013,33(12):3805-3815.
    [26] 周旗,卞娟娟,郑景云.秦岭南北1951—2009年的气温与热量资源变化[J].地理学报,2011,66(9):1211-1218.
    [27] 胡宜昌,董文杰,何勇.21世纪初极端天气气候事件研究进展[J].地球科学进展,2007,22(10):1066-1075.
    [28] 侯威.极端事件检测、评价方法及中国近40年极端温度和降水事件时空变化研究[D].兰州:兰州大学,2009.
    [29] 张雷.东亚地区城市化对极端气温变化的影响[D].南京:南京信息工程大学,2014.
    [30] 刘荣娟.气候变化背景下秦岭太白红杉的时空响应[D].西安:西北大学,2016.
    [31] 翟丹平.秦岭山地气温直减率时空差异及气温变化趋势[D].西安:西北大学,2017.
    [32] 李玮,段利民,刘廷玺,等.1961—2015年内蒙古高原内陆河东部流域极端降水时空变化特征分析[J].资源科学,2017,39(11):2153-2165.
    [33] 李如意,赵景波.毛乌素沙地1960—2013年极端气温变化[J].中国沙漠,2016,36(2):483-490.
    [34] 李芬,张建新,郝智文,等.山西降水与ENSO的相关性研究[J].地理学报,2015,70(3):420-430.
    [35] Zhang Q,WangY,Singh Vijay P,et al.Impacts of ENSO and ENSO Modoki+A regimes on seasonal precipitation variations and possible underlying causes in the Huai River basin,China[J].Journal of Hydrology,2016,533:308-319.
    [36] 王家龙.日地系统学中的太阳活动研究(Ⅰ):日地系统物理学中缓变型太阳活动的研究[J].地球物理学进展,1994,9(3):1-11.
    [37] 吴梦初,延军平.太阳活动与ENSO事件对云南省旱涝灾害的影响[J].水土保持通报,2014,34(4):280-284.
    [38] 王腾,延军平,张涛涛,等.太阳活动与ENSO事件对汉江谷地旱涝灾害影响分析[J].干旱区资源与环境,2013,27(7):107-112.
    [39] 马露,杨东,钱大文.ENSO事件对山东省区域降水量及干旱指数的影响[J].中国农业气象,2015,36(6):666-673.
    [40] 李晓燕,翟盘茂.ENSO事件指数与指标研究[J].气象学报,2000,58(1):102-109.
    [41] Miao J,Wang T,Wang H,et al.Influence of low-frequency solar forcing on the East Asian winter monsoon based on HadCM3 and observations[J].Advances in Atmospheric Sciences,2018,35(9):1205-1215.
    [42] 胡邦琦.中国东部陆架海泥质沉积区的物源识别及其环境记录[D].山东青岛:中国海洋大学,2010.
    [43] Caesar L,Rahmstorf S,Robinson A,et al.Observed fingerprint of a weakening Atlantic Ocean overturning circulation[J].Nature,2018,556(7700):191-196.
    [44] 朱玉祥.青藏高原冬春积雪对我国夏季降水分布的影响研究[D].南京:南京信息工程大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700