用户名: 密码: 验证码:
稀土纳米材料与植物相互作用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Interactions between Rare Earth Nanomaterials and Plants
  • 作者:崔静 ; 祁晶晶 ; 贺凤至 ; 张宇 ; 魏正贵
  • 英文作者:Cui Jing;Qi Jingjing;He Fengzhi;Zhang Yu;Wei Zhenggui;School of Environment, Nanjing Normal University;
  • 关键词:稀土纳米材料 ; 植物 ; 吸收 ; 迁移 ; 毒性效应
  • 英文关键词:rare earth nanomaterials;;plants;;uptake;;transport;;phytotoxicity
  • 中文刊名:中国稀土学报
  • 英文刊名:Journal of the Chinese Society of Rare Earths
  • 机构:南京师范大学环境学院;
  • 出版日期:2019-04-15
  • 出版单位:中国稀土学报
  • 年:2019
  • 期:02
  • 基金:第十三批江苏省六大人才高峰项目(184080H102227)资助
  • 语种:中文;
  • 页:16-28
  • 页数:13
  • CN:11-2365/TG
  • ISSN:1000-4343
  • 分类号:X171.5;TB383.1
摘要
稀土纳米材料被广泛使用,目前已大量进入环境,并可能对环境产生负面影响。植物是生态系统的基本组成部分,它与稀土纳米材料的相互作用应受到更为广泛的关注。稀土纳米材料被认为可进入植物体内,但途径尚存在争议;这类材料被认为具有植物毒性,但致毒机制尚不明确。稀土纳米材料还能产生代际效应、食物链传递过程等,关系着食品安全。就近年来植物吸收、迁移、转化稀土纳米材料进行了综述,同时评述了稀土纳米材料的植物毒性效应、代际效应及食物链传递机制。
        Owing to the wide application of rare earth nanomaterials(RENMs), a large number of RENMs enter the environment, which probably has negative effects on the environment. Plants are fundamental components of an ecosystem. Therefore, the interactions between RENMs and plants should be of particularly concern. RENMs can be absorbed by plants, but the way for RENMs to enter plants is controversial. The RENMs can cause phytotoxicity, but the toxic mechanism is also controversial. The RENMs can initiate plants intergenerational effects and food transportation process. These effects of RENMs closely relate to food safety. This paper reviewed the recent research progress on the interactions between RENMs and plants. The absorption, transportation, speciation transformation of RENMs in plants, the plants toxicity, plants intergenerational effects, and food chain transfer effect of RENMs were discussed.
引文
[1] Kaneko K, Inoke K, Freitag B, Hungria A B, Midgley P A, Hansen T W, Zhang J, Ohara S, Adschiri T. Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis [J]. Nano Lett., 2007, 7(2): 421.
    [2] Chen J P, Patil S, Seal S, Mcginnis J F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides [J]. Nat. Nanotechnol., 2006, 1(2): 142.
    [3] 沈岳年, 郭金玲. 纳米CeO2在生物医药上的应用 [J]. 中国稀土学报, 2016, 34(2): 129.Shen Y N, Guo J L. Applications of nanoceria in biomedical field [J]. Journal of the Chinese Society of Rare Earths, 2016, 34(2): 129.
    [4] 钟琦, 王彬彬, 黄紫彬, 黄凯龙. 稀土掺杂纳米TiO2的研究进展 [J]. 中国稀土学报, 2016, 34(4): 385.Zhong Q, Wang B B, Huang Z B, Huang K L. Progress in rare-earth doped titanium dioxide nanocrystal [J]. Journal of the Chinese Society of Rare Earths, 2016, 34(4): 385.
    [5] He L Y, Su Y M, Jiang L H, Shi S K. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: a review [J]. J. Rare Earths, 2015, 33(8): 791.
    [6] 刘铃声, 许延辉, 熊晓柏, 曹鸿璋, 孟志军, 王英杰. 稀土纳米材料的研究进展 [J]. 稀土, 2012, 33(6): 84.Liu L S, Xu Y H, Xiong X B, Cao H Z, Meng Z J, Wang Y J. Progress in nanocrystalline materials of rare earths [J]. Chinese Rare Earths, 2012, 33(6): 84.
    [7] Long M, Hong F S, Li W, Li F C, Zhao H Y, Lü Y Q, Li H X, Hu F, Sun L D, Yan C H, Wei Z G. Size-dependent microstructure and europium site preference influence fluorescent properties of Eu3+-doped Ca10(PO4)6(OH)2, nanocrystal [J]. J. Lumin., 2008, 128(3): 428.
    [8] 苏锵. 稀土化学 [M]. 郑州: 河南科学技术出版社, 1993.Su Q. Rare Earth Chemistry [M]. Zhengzhou: Henan Science and Technology Press, 1993.
    [9] Maynard A D, Aitken R J, Butz T, Colvin V, Donaldson K, Oberd?rster G, Philbert M A, Ryan J, Seaton A, Stone V. Safe handling of nanotechnology [J]. Nature, 2006, 444(7117): 267.
    [10] 杨新萍, 赵方杰. 植物对纳米颗粒的吸收、 转运及毒性效应 [J]. 环境科学, 2013, 34(11): 4495.Yang X P, Zhao F J. A review of uptake, translocation and phytotoxicity of engineered nanoparticles in plants [J]. Environmental Science, 2013, 34(11): 4495.
    [11] 吕继涛, 张淑贞. 人工纳米材料与植物的相互作用: 植物毒性、 吸收和传输 [J]. 化学进展, 2013, 25(1): 156.Lü J T, Zhang S Z. Interactions between manufactured nanomaterials and plants: phytotoxicity, uptake and translocation [J]. Progress in Chemistry, 2013, 25(1): 156.
    [12] Khodakovskaya M V, de Silva K, Nedosekin D A, Dervishi E, Biris A S, Shashkov E V, Galanzha E I, Zharov V P. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions [J]. Proc. Natl. Acad. Sci. U.S.A., 2011, 108(3): 1028.
    [13] Nel A E, M?dler L, Velegol D, Xia T, Hoek E M V, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface [J]. Nat. Mater., 2009, 8(7): 543.
    [14] 金姝兰, 黄益宗. 土壤中稀土元素的生态毒性研究进展 [J]. 生态毒理学报, 2014, 9(2): 213.Jin S L, Huang Y Z. A review on ecological toxicity of rare earth elements in soil [J]. Asian Journal of Ecotoxicology, 2014, 9(2): 213.
    [15] 梁涛, 丁士明, 宋文冲, 崇忠义, 陈岩. 稀土元素在植物中的分异研究进展 [J]. 中国稀土学报, 2007, 25(2): 129.Liang T, Ding S M, Song W C, Chong Z Y, Chen Y. Advances of rare earth elements fractionations and mechanisms studies in plants and their significance [J]. Journal of the Chinese Society of Rare Earths, 2007, 25(2): 129.
    [16] Judy J D, Unrine J M, Bertsch P M. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain [J]. Environ. Sci. Technol., 2011, 45(2): 776.
    [17] Zhu H, Han J, Xiao J Q, Jin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants [J]. J. Environ. Monit. Jem., 2008, 10(6): 713.
    [18] Holbrook R D, Murphy K E, Morrow J B, Cole K D. Trophic transfer of nanoparticles in a simplified invertebrate food web [J]. Nat. Nanotechnol., 2008, 3(6): 352.
    [19] 魏正贵, 张惠娟, 李辉信, 胡锋. 稀土元素超积累植物研究进展 [J]. 中国稀土学报, 2006, 24(1): 1.Wei Z G, Zhang H J, Li H X, Hu F. Research trends on rare earth element hyperaccumulator [J]. Journal of the Chinese Society of Rare Earths, 2006, 24(1): 1.
    [20] 陈海滨, 马秀丽, 陈志彪, 陈志强. 南方稀土矿区水土保持植物根际土壤碳氮及pH特征 [J]. 土壤学报, 2016, 53(5): 1334.Chen H B, Ma X L, Chen Z B, Chen Z Q. Carbon, nitrogen and pH in rhizosphere of soil-water conserving plants in rare earth mining area in south china [J]. Acta Pedologica Sinica, 2016, 53(5): 1334.
    [21] 吴建峰, 林先贵. 土壤微生物在促进植物生长方面的作用 [J]. 土壤, 2003, 35(1): 18.Wu J F, Lin X G. Effects of soil microbes on plant growth [J]. Siols, 2003, 35(1): 18.
    [22] 曹际玲, 冯有智, 林先贵. 人工纳米材料对植物-微生物影响的研究进展 [J]. 土壤学报, 2016, 53(1): 1.Cao J L, Feng Y Z, Lin X G. Review of researches on influences of engineered nanomaterials on plant-microorganisms [J]. Acta Pedologica Sinica, 2016, 53(1): 1.
    [23] Priester J H, Ge Y, Mielke R E, Horst A M, Moritz S C, Espinosa K, Gelb J, Walker S L, Nisbet R M, An Y J. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption [J]. Proc. Natl. Acad. Sci. U.S.A., 2012, 109(37): E2451.
    [24] Ge Y, Priester J H, Van de Werfhorst L C, Walker S L, Nisbet R M, An Y J, Schimel J P, Gardea-Torresdey J L, Holden P A. Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities [J]. Environ. Sci. Technol., 2014, 48(22): 13489.
    [25] Tang J, Zhu N, Zhu Y, Zamir S M, Wu Y. Sustainable pollutant removal by periphytic biofilm via microbial composition shifts induced by uneven distribution of CeO2 nanoparticles [J]. Bioresour. Technol., 2017.
    [26] Antisari L V, Carbone S, Gatti A, Vianello G, Nannipieri P. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil [J]. Soil Biol. Biochem., 2013, 60: 87.
    [27] Bandyopadhyay S, Peralta-Videa J R, Plascencia-Villa G, José-Yacamán M, Gardea-Torresdey J L. Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti , a symbiotic alfalfa associated bacterium: Use of advanced microscopic and spectroscopic techniques [J]. J. Hazard. Mater., 2012, 241-242(1): 379.
    [28] Schubert D, Dargusch R, Raitano J, Chan S W. Cerium and yttrium oxide nanoparticles are neuroprotective [J]. Biochem. Biophys. Res. Commun., 2006, 342(1): 86.
    [29] 沈星灿, 张丽, 雷文琪, 纪仕辰, 梁宏. 无机纳米晶-生物界面作用的分子机制 [J].中国科学: 化学, 2014, 44(4): 611.Shen X C, Zhang L, Lei W Q, Ji S C, Liang H. Molecular interaction for understanding the nanocrystalline-bio interface [J]. Scientia Sinica: Chimica, 2014, 44(4): 611.
    [30] Roh J Y, Park Y K, Park K, Choi J. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints [J]. Environ. Toxicol. Pharmacol., 2010, 29(2): 167.
    [31] Rogers N J, Franklin N M, Apte S C, Batley G E, Angel B M, Lead J R, Baalousha M. Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater [J]. Environ. Chem., 2010, 7(1): 50.
    [32] Antisari L V, Carbone S, Gatti A, Vianello G, Nannipieri P. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil [J]. Soil Biol. Biochem., 2013, 60: 87.
    [33] Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank A M. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-Chemical insight of the cytotoxicity mechanism [J]. Environ. Sci. Technol., 2006, 40(19): 6151.
    [34] Pelletier D A, Suresh A K, Holton G A, Mckeown C K, Wang W, Gu B, Mortensen N P, Allison D P, Joy D C, Allison M R. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability [J]. Appl. Environ. Microbiol., 2010, 76(24): 7981.
    [35] Leung Y H, Yung M M, Ng A M, Ma A P, Wong S W, Chan C M, Ng Y H, Djuri. Toxicity of CeO2 nanoparticles-the effect of nanoparticle properties [J]. J. Photochem. Photobiol. B, 2015, 145: 48.
    [36] Rodeapalomares I, Boltes K, Fernándezpiňas F, Leganés F, Garcíacalvo E, Santiago J, Rosal R. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms [J]. Toxicol. Sci., 2011, 119(1): 135.
    [37] Rodea-Palomares I, Gonzalo S, Santiago-Morales J, Leganés F, García-Calvo E, Rosal R, Fernández-Piňas F. An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms [J]. Aquat. Toxicol., 2012, 122-123(2): 133.
    [38] Backes C A, Mclaren R G. Kinetics of cadmium and cobalt desorption from iron and manganese oxides [J]. Soil Sci. Soc. Am. J., 1995,59(3): 778.
    [39] Zhong X L, Zhou S L, Zhu Q, Zhao Q G. Fraction distribution and bioavailability of soil heavy metals in the Yangtze River Delta—A case study of Kunshan City in Jiangsu Province, China [J]. J. Hazard. Mater., 2011, 198(2): 13.
    [40] Zhang W L, Musante C, White J C, Schwab P, Wang Q, Ebbs S D, Ma X M. Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils [J]. Plant Physiol. Biochem., 2017, 110: 185.
    [41] Schwabe F, Schulin R, Rupper P, Rotzetter A, Stark W, Nowack B. Dissolution and transformation of cerium oxide nanoparticles in plant growth media [J]. J. Nanopart. Res., 2014, 16(10): 1.
    [42] Hoecke K V, Schamphelaere K A C D, Meeren P V D, Smagghe G, Janssen C R. Aggregation and ecotoxicity of CeO nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength [J]. Environ. Pollut., 2011, 159(4): 970.
    [43] Miralles P, Church T L, Harris A T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants [J]. Environ. Sci. Technol., 2012, 46(17): 9224.
    [44] Zhao L J, Peralta-Videa J R, Varela-Ramirez A, Castillo-Michel H, Li C Q, Zhang J Y, Aguilera R J, Keller A A, Gardea-Torresdey J L. Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism [J]. J. Hazard. Mater., 2012, 225-226(31): 131.
    [45] Chen G C, Ma C X, Mukherjee A, Musante C, Zhang J F, White J C, Dhankher O P, Xing B S. Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: A physiological and molecular response [J]. Nanotoxicology, 2016, 10(9): 1.
    [46] Cornelis G, Ryan B, McLaughlin M J, Kirby J K, Beak D, Chittleborough D. Solubility and batch retention of CeO2 nanoparticles in soils [J]. Environ. Sci. Technol., 2011, 45(7): 2777.
    [47] Van K F, Verstraete S, Van d M P, Du L G. Stability of engineered nanomaterials in complex aqueous matrices: Settling behaviour of CeO2 nanoparticles in natural surface waters [J]. Environ. Res., 2015, 142: 207.
    [48] Zhang P, Ma Y H, Zhang Z Y, He X, Zhang J, Guo Z, Tai R Z, Zhao Y L, Chai Z F. Biotransformation of ceria nanoparticles in cucumber plants [J]. Acs Nano., 2012, 6(11): 9943.
    [49] Ma Y H, He X, Zhang P, Zhang Z Y, Guo Z, Tai R Z, Xu Z J, Zhang L J, Ding Y Y, Zhao Y L, Chai Z F. Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus) [J]. Nanotoxicology, 2011, 5(4): 743.
    [50] Zhang P, Ma Y H, Zhang Z Y, He X, Guo Z, Tai R Z, Ding Y Y, Zhao Y L, Chai Z F. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus) [J]. Environ. Sci. Technol., 2012, 46(3): 1834.
    [51] Wang Z Y, Xie X Y, Zhao J, Liu X Y, Feng W Q, White J C, Xing B S. Xylem and phloem based transport of CuO nanoparticles in maize (Zea mays L.) [J]. Environ. Sci. Technol., 2012, 46(8): 4434.
    [52] Zhang Z Y, He X, Zhang H F, Ma Y H, Zhang P, Ding Y Y, Zhao Y L. Uptake and distribution of ceria nanoparticles in cucumber plants [J]. Metallomics, 2011, 3(8): 816.
    [53] Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark W J, Günther D, Limbach L K. No evidence for cerium dioxide nanoparticle translocation in maize plants [J]. Environ. Sci. Technol., 2010, 44(22): 8718.
    [54] Wild E, Jones K C. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants [J]. Environ. Sci. Technol., 2009, 43(14): 5290.
    [55] Fellows R J, Zheming Wang A, Ainsworth C C. Europium uptake and partitioning in oat (Avena sativa) roots as studied by laser-induced fluorescence spectroscopy and confocal microscopy profiling technique [J]. Environ. Sci. Technol., 2003, 37(22): 5247.
    [56] Lin D H, Xing B S. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth [J]. Environ. Pollut., 2007, 150(2): 243.
    [57] Ma Y H, Zhang P, Zhang Z Y, He X, Zhang J Z, Ding Y Y, Zhang J, Zheng L R, Guo Z, Zhang L J, Chai Z F, Zhao Y L. Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? [J]. Environ. Sci. Technol., 2015, 49(17): 10667.
    [58] Zhang P, Ma Y H, Liu S T, Wang G H, Zhang J Z, He X, Zhang J,Rui Y K, Zhang Z Y. Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce [J]. Environ. Pollut., 2017, 220(Pt B): 1400.
    [59] Rui Y K, Zhang P, Zhang Y B, Ma Y H, He X, Gui X, Li Y Y, Zhang J, Zheng L R, Chu S Q, Guo Z, Chai Z F, Zhao Y L, Zhang Z Y. Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate [J]. Environ. Pollut., 2015, 198: 8.
    [60] Zhao L J, Sun Y P, Hernandez-Viezcas J A, Servin A D, Hong J, Niu G H, Peralta-Videa J R, Duarte-Gardea M, Gardea-Torresdey J L. Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A life cycle study [J]. J. Agric. Food. Chem., 2013, 61(49): 11945.
    [61] Hernandezviezcas J A, Castillomichel H, Andrews J C, Cotte M, Rico C, Peraltavidea J R, Ge Y, Priester J H, Holden P A, Gardeatorresdey J L. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max) [J]. Acs Nano., 2013, 7(2): 1415.
    [62] Ma Y H, He X, Zhang P, Zhang Z Y, Ding Y Y, Zhang J Z, Wang G H, Xie C J, Luo W H, Zhang J, Zheng L R, Chai Z F, Yang K. Xylem and phloem based transport of CeO2 nanoparticles in hydroponic cucumber plants [J]. Environ. Sci. Technol., 2017, 51(9): 5215.
    [63] Hong J, Peraltavidea J R, Rico C, Sahi S, Viveros M N, Bartonjo J, Zhao L J, Gardeatorresdey J L. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants [J]. Environ. Sci. Technol., 2014, 48(8): 4376.
    [64] Ma X M, Wang Q, Rossi L, Ebbs S D, White J C. Multigenerational exposure to cerium oxide nanoparticles: Physiological and biochemical analysis reveals transmissible changes in rapid cycling Brassica rapa [J]. Nanoimpact, 2016, 1: 46.
    [65] Wang G H, Ma Y H, Zhang P, He X, Zhang Z H, Qu M H, Ding Y Y, Zhang J Z, Xie C J, Luo W H, Zhang J, Chu S Q, Chai Z F, Zhang Z Y. Influence of phosphate on phytotoxicity of ceria nanoparticles in an agar medium [J]. Environ. Pollut., 2017, 224: 392.
    [66] Cui D, Zhang P, Ma Y H, He X, Li Y Y, Zhang J, Zhao Y C, Zhang Z Y. Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium [J]. Environ. Sci. Nano., 2014, 1(5): 459.
    [67] Zhang P, Ma Y H, Zhang Z Y, He X, Li Y Y, Zhang J, Zheng L R, Zhao Y L. Species-specific toxicity of ceria nanoparticles to Lactuca plants [J]. Nanotoxicology, 2015, 9(1): 1.
    [68] Lópezmoreno M L, Rosa G D L, Castillomichel H, Botez C E, Peraltavidea J R, Gardeatorresdey J L. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants [J]. Environ. Sci. Technol., 2010, 44(19): 7315.
    [69] Gui X, Zhang Z Y, Liu S T, Ma Y H, Zhang P, He X, Li Y Y, Zhang J, Li H F, Rui Y K. Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment [J]. PloS One, 2015, 10(8): e0134261.
    [70] Corral-Diaz B, Peralta-Videa J R, Alvarez-Parrilla E, Rodrigo-García J, Morales M I, Osuna-Avila P, Niu G, Hernandez-Viezcas J A, Gardea-Torresdey J L. Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L) [J]. Plant Physiol. Biochem., 2014, 84(a1): 277.
    [71] Ma Y H, Zhang P, Zhang Z Y, He X, Li Y Y, Zhang J, Zheng L R, Chu S Q, Yang K, Zhao Y L. Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber [J]. Nanotoxicology, 2015, 9(2): 262.
    [72] Hawthorne J, De la Torre Roche R, Xing B, Newman L A, Ma X, Majumdar S, Gardea-Torresdey J, White J C. Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain [J]. Environ. Sci. Technol., 2014, 48(22): 13102.
    [73] Yang X P, Pan H P, Wang P, Zhao F J. Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana [J]. J. Hazard. Mater., 2016, 322(Pt A): 292.
    [74] De la Torre Roche R, Servin A, Hawthorne J, Xing B, Newman L A, Ma X, Chen G, White J C. Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size [J]. Environ. Sci. Technol., 2015, 49(19): 11866.
    [75] Ma Y H, Kuang L L, He X, Bai W, Ding Y Y, Zhang Z Y, Zhao Y L, Chai Z F. Effects of rare earth oxide nanoparticles on root elongation of plants [J]. Chemosphere, 2010, 78(3): 273.
    [76] Barrios A C, Rico C M, Trujillo-Reyes J, Medina-Velo I A, Peralta-Videa J R, Gardea-Torresdey J L. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants [J]. Sci. Total Environ., 2016, 563-564: 956.
    [77] Trujillo-Reyes J, Vilchis-Nestor A R, Majumdar S, Peralta-Videa J R, Gardea-Torresdey J L. Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings [J]. J. Hazard. Mater., 2013, 263(4): 677.
    [78] Zhao L J, Sun Y P, Hernandez-Viezcas J A, Hong J, Majumdar S, Niu G H, Duarte-Gardea M, Peraltavidea J R, Gardeatorresdey J L. Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels [J]. Environ. Sci. Technol., 2015, 49(5): 2921.
    [79] Rico C M, Barrios A C, Tan W, Rubenecia R, Lee S C, Varela-Ramirez A, Peralta-Videa J R, Gardea-Torresdey J L. Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles [J]. Environ. Sci. Pollut. Res., 2015, 22(14): 10551.
    [80] Rico C M, Lee S C, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa J R, Gardea-Torresdey J L. Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.) [J]. J. Agric. Food. Chem., 2014, 62(40): 9669.
    [81] Li X G, Gui X, Rui Y K, Ji W K, Nhan L V, Yu Z H, Peng S N. Bt-transgenic cotton is more sensitive to CeO2 nanoparticles than its parental non-transgenic cotton [J]. J. Hazard. Mater., 2014, 274(12): 173.
    [82] Gomez A, Pintos B, Manzanera J A, Prada C, Martín L, Galán J M G Y. Nanoceria and bulk cerium oxide effects on the germination of Asplenium adiantum-nigrum spores [J]. Forest Syst., 2016, 25(3): e067.
    [83] Shtangeeva I, Ayrault S. Effects of Eu and Ca on yield and mineral nutrition of wheat (Triticum aestivum) seedlings [J]. Environ. Exp. Bot., 2007, 59(1): 49.
    [84] Li Z J, Zhang Z Y, Yu M, Zhou Y L, Zhao Y L. Effects of lanthanum on calcium and magnesium contents and cytoplasmic streaming of internodal cells of Chara corallina [J]. Biol. Trace Elem. Res., 2011, 143(1): 555.
    [85] Zheng H L, Zhao Z Q, Zhang C G, Feng J Z, Ke Z L, Su M J. Changes in lipid peroxidation, the redox system and ATPase activities in plasma membranes of rice seedling roots caused by lanthanum chloride [J]. Biometals, 2000, 13(2): 157.
    [86] Zeng Q, Zhu J G, Cheng H L, Xie Z B, Chu H Y. Phytotoxicity of lanthanum in rice in haplic acrisols and cambisols [J]. Ecotoxicol. Environ. Saf., 2006, 64(2): 226.
    [87] d′Aquino L, de Pinto M C, Nardi L, Morgana M, Tommasi F. Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum [J]. Chemosphere, 2009, 75(7): 900.
    [88] Ippolito M P, Fasciano C, d′Aquino L, Morgana M, Tommasi F. Responses of antioxidant systems after exposition to rare earths and their role in chilling stress in common duckweed (Lemna minor L.): A defensive weapon or a boomerang? [J]. Arch. Environ. Contam. Toxicol., 2010, 58(1): 42.
    [89] 张轩波, 王丽红, 周青. 稀土农用对植物亚细胞结构的生物效应 [J]. 土壤通报, 2015, 46(6): 1503.Zhang X B, Wang L H, Zhou Q. Biological effect of rare earth elements on subcellular fraction in plant [J]. Chinese Journal of Soil Science, 2015, 46(6): 1503.
    [90] Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J I, Wiesner M R, Nel A E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm [J]. Nano Lett., 2006, 6(8): 1794.
    [91] Majumdar S, Almeida I C, Arigi E A, Choi H, Verberkmoes N C, Trujillo-Reyes J, Flores-Margez J P, White J C, Peralta-Videa J R, Gardea-Torresdey J L. Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris): A proteomic analysis [J]. Environ. Sci. Technol., 2015, 49(22): 13283.
    [92] Park E J, Choi J, Park Y K, Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells [J]. Toxicology, 2008, 245(1-2): 90.
    [93] Rico C M, Hong J, Morales M I, Zhao L, Barrios A C, Zhang J Y, Peraltavidea J R, Gardeatorresdey J L. Effect of cerium oxide nanoparticles on rice: A study involving the antioxidant defense system and in vivo fluorescence imaging [J]. Environ. Sci. Technol., 2013, 47(11): 5635.
    [94] Morales M I, Rico C M, Hernandez-Viezcas J A, Nunez J E, Barrios A C, Tafoya A, Flores-Marges J P, Peralta-Videa J R, Gardea-Torresdey J L. Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil [J]. J. Agric. Food. Chem., 2013, 61(26): 6224.
    [95] Wang Q, Ebbs S D, Chen Y S, Ma X M. Trans-generational impact of cerium oxide nanoparticles on tomato plants [J]. Metallomics, 2013, 5(6): 753.
    [96] Rico C M, Johnson M G, Marcus M, Andersen C. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure [J]. Environ. Sci. Nano., 2017, 4(3): 700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700