用户名: 密码: 验证码:
降雨量对科尔沁沙地3种沙生植物生长和生理的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Precipitation on Growth and Physiology of Three Psammophytes in the Horqin Sandy Land, China
  • 作者:陈娟丽 ; 赵学勇 ; 刘新平 ; 张雅秋 ; 罗永清 ; 张蕊 ; 张润霞 ; 于海伦
  • 英文作者:Chen Juanli;Zhao Xueyong;Liu Xinping;Zhang Yaqiu;Luo Yongqing;Zhang Rui;Zhang Runxia;Yu Hailun;Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Hanzhong Agricultural Technology Extension Center;
  • 关键词:沙生植物 ; 降雨量增减 ; 生长特性 ; 叶绿素荧光特性 ; 抗氧化酶
  • 英文关键词:psammophytes;;precipitation addition or reduction;;growth properties;;chlorophyll fluorescence;;antioxidant enzymes
  • 中文刊名:中国沙漠
  • 英文刊名:Journal of Desert Research
  • 机构:中国科学院西北生态环境资源研究院;中国科学院大学;汉中市农业技术推广中心;
  • 出版日期:2019-09-15
  • 出版单位:中国沙漠
  • 年:2019
  • 期:05
  • 基金:国家重点研发计划项目(2017FY100200);; 国家自然科学基金项目(31500369,41371053);; 中国科学院西北生态环境资源研究院“科尔沁沙生植物资源调查”项目
  • 语种:中文;
  • 页:167-177
  • 页数:11
  • CN:62-1070/P
  • ISSN:1000-694X
  • 分类号:Q948.11
摘要
对降水格局变化的响应是植物适应环境的重要方面。通过野外增减雨试验,研究了降水变化对科尔沁沙地3种沙生植物生长特性和生理特征的影响。结果表明:(1)6月植被平均密度最大,7月平均盖度最大,降雨量增加60%时,植被盖度最大,为58.0%。(2)增雨区的主要植物为雾冰藜(Bassia dasyphylla)和猪毛菜(Salsola collina),减雨区主要植物为蒺藜(Tribulus terrestris),降雨量减少60%时,蒺藜在6、7、8月密度分别为70%、80%、79%,显著高于其他植物。(3)降雨量减少时,3种沙生植物的相对含水量(RWC)减少,而细胞膜透性增加;蒺藜RWC高于雾冰藜和猪毛菜,但是丙二醛(MDA)正好相反;蒺藜的耐脱水能力和细胞膜的耐伤害程度强于雾冰藜和猪毛菜。(4)随着降雨量的增加,3种植物的光能转化效率(F_v/F_m、ΦPSⅡ)逐渐增加,但随干旱天数的增加而减小。
        The response of plant to the change of precipitation pattern is one of the important contents of the study on the mechanism of plant adapting to environmental changes, while the comparative study on the response of plant to the change of precipitation gradient in arid and semi-arid regions is rarely reported. Effects of precipitation on growth and physiology of three psammophytes were conducted with a precipitation-addition-reduction device in Horqin Sandy Land. The results showed that(1) The average density reached the maximum in June, but the average coverage reached the maximum value in July, and the coverage reached the highest of 58.0% under +60% treatment.(2) The main vegetation in precipitation addition region were Bassia dasyphylla and Salsola collina, while the main vegetation in precipitation reduction region was Tribulus terrestris. Under-60% treatment, the density of T. terrestris in the period from June to August was 70%, 80% and 79%, which was significantly higher than other plants.(3) The relative water content(RWC) of the studied species decreased and the membrane permeability increased as precipitation decreased. RWC of T. terrestris was higher than those of B. dasyphylla and S. collina, but the malondialdehyde(MDA) was opposite, which indicated that the ability of T. terrestris to withstand dehydration and damage was stronger than those of B. dasyphylla and S. collina.(4) F_v/F_m and ΦPSⅡof three psammophytes gradually increased with the increase of precipitation, but decreased with the increase of drought days.
引文
[1]邱汉学,王秉忱,Adams B.干旱区水资源开发利用与可持续发展[J].海洋地质与第四纪地质,1998,18(4):97-108.
    [2]Dodd M B,Lauenroth W K,Welker J M.Differential water resource use by herbaceous and w oody plant life-forms in a shortgrass steppe community[J].Oecologia,1998,117(4):504-512.
    [3]Wilhelmi O V,Wilhite D A.Assessing vulnerability to agricultural drought:a nebraska case study[J].Natural Hazards,2002,25:37-58.
    [4]Danin A.Plants of Desert Dunes[M].Berlin,Germany:Springer,1996.
    [5]常学礼,赵爱芬,李胜功.科尔沁沙地固定沙丘植被物种多样性对降水变化的响应[J].植物生态学报,2000,24(2):147-151.
    [6]安玉艳.杠柳适应黄土丘陵干旱环境的生产生态策略[D].陕西杨凌:中国科学院教育部水土保持与生态环境研究中心,2011.
    [7]王飞,刘世增,康才周,等.干旱胁迫对沙地云杉光合、叶绿素荧光特性的影响[J].干旱区资源与环境,2017,31(1):142-147.
    [8]姚春娟,郭圣茂,马英超,等.干旱胁迫对4种决明属植物光合作用和叶绿素荧光特性的影响[J].草业科学,2017,34(9):1880-1888.
    [9]马瑞丽,胥生荣,陈垣,等.干旱胁迫对黄芪叶片光合特性和叶绿素荧光参数的影响[J].中药材,2018,41(3):531-534.
    [10]周瑞莲,王海鸥.在干旱、高温胁迫中沙生植物抗脱水性与膜脂过氧化关系的研究[J].中国沙漠,1999,19(增刊1):59-64.
    [11]刘玉冰,李新荣,谭会娟,等.荒漠地区两种生态型芦苇叶片的抗氧化生理特性分析[J].中国沙漠,2011,31(2):277-281.
    [12]吕娥娥,周向睿,周志宇,等.荒漠灌木蒙古岩黄芪对干旱胁迫的生理响应[J].草业学报,2016,25(6):42-50.
    [13]石文宏,宛涛,蔡萍,等.乌丹蒿幼苗对干旱胁迫的生理响应[J].中国草地学报,2018,40(1):115-120.
    [14]张玉曼,王月,李乔,等.AM真菌影响入侵植物黄顶菊与本土物种狗尾草竞争生长的机理研究[J].西北植物学报,2015,35(6):1215-1221.
    [15]An Y Y,Liang Z S,Zhao R K,et al.Organ-dependent responses of Periploca sepium to repeated dehydration and rehydration[J].South African Journal of Botany,2011,77(2):446-454.
    [16]周瑞莲,侯玉萍,左进城,等.不同沙地共有种沙生植物对环境的生理适应机理[J].生态学报,2015,35(2):340-349.
    [17]周瑞莲,解卫海,侯玉平,等.东北沙地7种植物高温时段的生理适应对策[J].林业科学,2014,50(6):74-81.
    [18]Zuo X A,Zhang J,Zhou X,et al.Changes in carbon and nitrogen storage along a restoration gradient in a semiarid sandy grassland[J].Acta Oecologica,2015,69:1-8.
    [19]张腊梅,刘新平,赵学勇,等.科尔沁固定沙地植被特征对降雨变化的响应[J].生态学报,2014,34(10):2737-2745.
    [20]Zhao H L,Zhou R L,Zhang T H,et al.Effects of desertification on soil and crop grow th properties in Horqin sandy cropland of Inner M ongolia,north China[J].Soil and Tillage Research,2006,87:175-185.
    [21]Li J,Qu H,Zhao H L,et al.Growth and physiological responses of Agriophyllum squarrosum to sand burial stress[J].Journal of Arid Land,2017,7(1):94-100.
    [22]Jaleel C A,Manivannan P,Wahid A,et al.Drought stress in plants:a review on morphological characteristics and pigments composition[J].International Journal of Agriculture&Biology,2009,11(1):100-105.
    [23]Pavlovi■ A.Photosynthetic characterization of Australian pitcher plant Cephalotus follicularis[J].Photosynthetica,2011,49(2):253-258.
    [24]Rohá■ek K.Chlorophyll fluorescence parameters:the definitions,photosynthetic meaning,and mutual relationships[J].Photosynthetica,2002,40(1):13-29.
    [25]丁雷,王学臣.干旱胁迫下ABA对气孔运动的作用机制[J].干旱地区农业研究,1993,11(2):50-56.
    [26]周瑞莲,杨淑琴,黄清荣,等.小叶锦鸡儿抗沙埋生长与抗氧化酶及同工酶变化的关系[J].生态学报,2015,35(9):3014-3022.
    [27]Heath R L,Packer L.Photoperoxidation in isolated chloroplasts I.kinetics and stoichiometry of fatty acid peroxidation[J].Archives of Biochemistry and Biophysics,1968,125(1):189-198.
    [28]Drazkiewicz M,Skórzyńska-Polit E,Krupa Z.Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana[J].Biometals,2004,17:379-387.
    [29]Sundar D,Perianayaguy B,Reddy A R.Localization of antioxidant enzymes in the cellular compartments of sorghum leaves[J].Plant Growth Regulation,2004,44:157-163.
    [30]Easterling D R,Meehl G A,Parmesan C,et al.Climate extremes:observations,modeling,and impacts[J].Science,2000,289(5487):2068-2074.
    [31]Da M P K,Milstead W B,Gutierrez J R.Thirteen years of shifting top-dow n and bottom-up control[J].Bioscience,2003,53(7):633-646.
    [32]李才才.水分和养分对退化荒漠草原植被恢复及碳储量的影响[D].呼和浩特:内蒙古农业大学,2012.
    [33]朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28(4):491-498.
    [34]Gong J R,Zhao A F,Huang Y M,et al.Water relations,gas exchange,photochemical efficiency,and peroxidative stress of four plant species in the Heihe drainage basin of northern China[J].Photosynthetica,2006,44(3):355-364.
    [35]周智彬,徐新文,杨兰英.三种固沙植物对高温胁迫的生理响应及其抗热性研究[J].干旱区地理,2005,28(6):824-830.
    [36]王小丽,裴玉贺,郭新梅,等.低温胁迫下玉米幼苗的几种生理生化指标的变化[J].植物生理学报,2009,45(5):487-490.
    [37]何广礼,忠乃.干旱胁迫对盆栽小黑麦生物学特性及叶绿素含量的影响[J].畜牧与饲料科学,2010,31(10):54-56.
    [38]杨锐,郎莹,张光灿,等.野生酸枣光合及叶绿素荧光参数对土壤干旱胁迫的响应[J].西北植物学报,2018,38(5):922-931.
    [39]靳月,李铁华,文仕知,等.干旱胁迫对闽楠幼苗的生长和生理特性的影响[J].中南林业科技大学学报,2018,38(9):50-57.
    [40]Qayyum A.Water stress causes differential effects on germination indices,total soluble sugar and proline content in w heat(Triticum aestivum L.)genotypes[J].African Journal of Biotechnology,2011,10(64):14038-14045.
    [41]Ron M.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405-410.
    [42]Sergi M B,Leonor A.Drought-induced changes in the redox state of alpha-tocopherol,ascorbate,and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents[J].Plant Physiology,2003,131(4):1816-1825.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700