用户名: 密码: 验证码:
基于傅里叶变换离子回旋共振质谱测定的土壤溶解性有机质研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on Soil Dissolved Organic Matter Determined with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
  • 作者:陈旭 ; 韩晓增 ; 严君 ; 陆欣春 ; 邹文秀
  • 英文作者:CHEN Xu;HAN Xiao-zeng;YAN Jun;LU Xin-chun;ZOU Wen-xiu;Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences;
  • 关键词:土壤 ; 有机质 ; 溶解性有机质 ; 傅里叶变换离子回旋共振质谱
  • 英文关键词:Soil;;Organic matter;;Dissolved organic matter;;Fourier transform ion cyclotron resonance mass spectrometry
  • 中文刊名:土壤通报
  • 英文刊名:Chinese Journal of Soil Science
  • 机构:中国科学院东北地理与农业生态研究所黑土区农业生态院重点实验室;
  • 出版日期:2019-06-06
  • 出版单位:土壤通报
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划(2016YFD0200309-6,2017YFD0300605);; 国家自然科学基金(41571219,41301312,41371296,41807085);; 现代农业产业技术体系(CARS-04);; 黑龙江省应用技术研究与开发计划(GY2017ZB006)共同资助
  • 语种:中文;
  • 页:234-240
  • 页数:7
  • CN:21-1172/S
  • ISSN:0564-3945
  • 分类号:S153.6
摘要
溶解性有机质(DOM)是土壤溶液中的一种常见组分,对生物地球化学和碳循环过程起着重要作用。然而由于组成复杂且难以分离,多数研究只能提供不同官能团信息以及一些分类数据,对该类化合物的组成研究非常薄弱。电喷雾电离源(ESI)结合傅里叶变换离子回旋共振质谱(FT-ICR-MS)具有超高质量分辨能力,近年来开始应用于土壤DOM分析领域。本文概述了(ESI)FT-ICR-MS高分辨率质谱检测特性,并重点阐述了依托该技术测定的土壤DOM在不同土地利用方式、土层深度和土壤温度下的组成和特征。在此基础上,指出了目前研究中(ESI)FT-ICR-MS技术存在的局限性,并提出了有待于进一步研究的一些问题。
        Soil organic matter(SOM) is involved in many important soil processes such as carbon sequestration and global biogeochemistry. The molecular composition and diversity of soil dissolved organic matter(DOM) are more complicated, however, most studies only identified some information about functional groups and its classification. It is still unclear what is the molecular composition of DOM in soil. Ultrahigh resolution electrospray ionization fourier transform ion cyclotron resonance mass spectrometry(FT-ICR-MS) has become a powerful state-of-the-art method for analyzing the molecular characterization of SOM. This review summarized some characteristics of FT-ICR-MS and specified the molecular composition and diversity of soil DOM determined with FT-ICR-MS under different land-use types and temperatures. Finally, we proposed some problems of current research and some prospects for the future research on soil DOM.
引文
[1] JONES D L, SIMFUKWE P, HILL P W, et al. Evaluation of Dissolved Organic Carbon as a Soil Quality Indicator in National Monitoring Schemes[J]. Plos One, 2014, 9(e908823).
    [2] VAN DER WAL A, DE BOER W. Dinner in the dark:Illuminating drivers ofsoil organicmatter decomposition[J]. Soil Biology&Biochemistry,2017, 105:45-48.
    [3] KALBITZ K, KAISER K. Ecological aspects of dissolved organic matter in soils[J]. Geoderma, 2003, 113(3):177-178.
    [4] RASILO T, OJALA A, HUOTARI J, et al. Concentrations and quality of DOC along the terrestrial-aquatic continuum in a boreal forested catchment[J]. Freshwater Science, 2015, 34(2):440-455.
    [5] HOUSER J N, MULHOLLAND P J, MALONEY K O. Catchment disturbance and stream metabolism:patterns in ecosystem respiration and gross primary production along a gradient of upland soil and vegetation disturbance[J]. Journal of The North American Benthological Society, 2005, 24(3):538-552.
    [6] BOLAN N S, ADRIANO D C, KUNHIKRISHNAN A, et al. Chapter One-Dissolved Organic Matter:Biogeochemistry, Dynamics, and Environmental Significance in Soils[M].AdvancesinAgronomy,Academic Press, 2011, 1-75.
    [7] CHEN T, CHEN Z. Cadmium adsorption in soil influenced by dissolved organic matter derived from rice straw and sediment[J]. The Journal of Applied Ecology, 2002, 13(2):183-186.
    [8] CHO Y, AHMED A, ISLAM A, et al. Developments in ft-icr ms instrumentation, ionization techniques, and data interpretation methods for petroleomics[J]. Mass Spectrometry Reviews, 2015, 34(2):248-263.
    [9] MAZUR D M, HARIR M, SCHMITT-KOPPLIN P, et al. High field FT-ICR mass spectrometry for molecular characterization of snow board from Moscow regions[J]. Science of The Total Environment, 2016,557-558:12-19.
    [10] KSIONZEK K B, LECHTENFELD O J, MCCALLISTER S L, et al.Dissolved organic sulfur in the ocean:Biogeochemistry of a petagram inventory[J]. Science, 2016, 354(6311):456-459.
    [11] GUIGUE J, HARIR M, MATHIEU O, et al. Ultrahigh-resolution FT-ICR mass spectrometry for molecular characterisation of pressurised hot water-extractable organic matter in soils[J].Biogeochemistry, 2016,128(3):307-326.
    [12] LOBODIN V V, JUYAL P, MCKENNA A M, et al. Lithium Cationization for Petroleum Analysis by Positive Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry[J]. Energy&fuels, 2014, 28(11):6841-6847.
    [13] ANTONY R, GRANNAS A M, WILLOUGHBY A S, et al. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet[J]. Environ Sci Technol, 2014, 48(11):6151-6159.
    [14] FIEVRE A, SOLOUKI T, MARSHALL A G, et al. High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids by laser desorption/ionization and electrospray ionization[J]. Energy&Fuels, 1997, 11(3):554-560.
    [15] STUBBINS A, SPENCER R G M, CHEN H, et al. Illuminated darkness:Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry[J]. Limnology and Oceanography, 2010,55(4):1467-1477.
    [16] DIDONATO N, CHEN H, WAGGONER D, et al. Potential origin and formation for molecular components of humic acids in soils[J].Geochimica Et Cosmochimica Acta, 2016, 178:210-222.
    [17] WILLOUGHBY A S, WOZNIAK A S, HATCHER P G. Detailed Source-Specific Molecular Composition of Ambient Aerosol Organic Matter Using Ultrahigh Resolution Mass Spectrometry and H-1 NMR[J]. Atmosphere, 2016, 7(6):79.
    [18] CHENU C, RUMPEL C, LEHMANN J. Chapter 13-Methods for Studying Soil Organic Matter:Nature, Dynamics, Spatial Accessibility, and Interactions with Minerals, Soil Microbiology[M],Ecology and Biochemistry(Fourth Edition), Boston:Academic Press,2015, 383-419.
    [19] K魻GEL-KNABNER I. Analytical approaches for characterizing soil organic matter[J]. Organic Geochemistry, 2000, 31(7):609-625.
    [20] BEYER L, WACHENDORF C, KOEBBEMANN C. A simple wet chemical-extraction procedure to characterize soil organic-matter(som).1. application and recovery rate[J]. Communications in Soil Science and Plant Analysis, 1993, 24(13-14):1645-1663.
    [21] ITOH A, HARAGUCHI H. Formation of large molecular humic-acid with addition of zinc ion as elucidated by liquid-chromatography ICP-AES[J]. Chemistry Letters, 1994,(9):1627-1630.
    [22] ASTER B, BURBA P, BROEKAERT J. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration[J]. Fresenius Journal of Analytical Chemistry,1996, 354(5-6):722-728.
    [23] COZZI S, CANTONI C. Stable isotope(delta C-13 and delta N-15)composition of particulate organic matter, nutrients and dissolved organic matter during spring ice retreat at Terra Nova Bay[J].Antarctic Science, 2011, 23(1):43-56.
    [24] DE LA ROSA J M, GONZ魣LEZ-P魪REZ J A, GONZ魣LEZV魣ZQUEZ R, et al. Use of pyrolysis/GC-MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest[J]. Catena, 2008, 74(3):296-303.
    [25] ESHETU B, JANDL G, LEINWEBER P. Compost Changed Soil Organic Matter Molecular Composition:A Py-GC/MS and Py-FIMS Study[J]. Compost Science&Utilization, 2012, 20(4):230-238.
    [26] SLEIGHTER R L, HATCHER P G. The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter[J]. Journal of Mass Spectrometry, 2007, 42(5):559-574.
    [27] RIEDEL T, BIESTER H, DITTMAR T. Molecular Fractionation of Dissolved Organic Matter with Metal Salts[J]. Environmental Science&Technology, 2012, 46(8):4419-4426.
    [28] HE Z, OHNO T, CADE-MENUN B J, et al. Spectral and chemical characterization of phosphates associated with humic substances[J].Soil Science Society of America Journal, 2006, 70(5):1741-1751.
    [29] NGUYEN T B, NIZKORODOV S A, LASKIN A, et al. An approach toward quantification of organic compounds in complex environmental samples using high-resolution electrospray ionization mass spectrometry[J]. Analytical Methods, 2013, 5(1):72-80.
    [30] HERTKORN N, RUECKER C, MERINGER M, et al. High-precision frequencymeasurements:indispensable tools at the core of the molecularlevelanalysisofcomplexsystems[J].Analyticaland Bioanalytical Chemistry,2007, 389(5):1311-1327.
    [31] MINOR E C, STEINBRING C J, LONGNECKER K, et al.Characterization of dissolved organic matter in Lake Superior and its watershed using ultrahigh resolution mass spectrometry[J]. Organic Geochemistry, 2012, 43:1-11.
    [31] SIMPSON A J, SIMPSON M J, SOONG R. Nuclear Magnetic Resonance SpectroscopyandItsKeyRoleinEnvironmentalResearch[J]. Environmental Science&Technology, 2012, 46(21):11488-11496.
    [12] BALCARCZYK K L, JONES J B, JAFFE R, et al. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost[J]. Biogeochemistry, 2009, 94(3):255-270.
    [34] SEIFERT A G, ROTH V N, DITTMAR T, et al. Comparing molecular composition of dissolved organic matter in soil and stream water:Influence of land use and chemical characteristics[J]. Sci Total Environ,2016, 571:142-152.
    [35] OHNO T, OHNO P E. Influence of heteroatom pre-selection on the molecular formula assignment of soil organic matter components determined by ultrahigh resolution mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2013, 405(10):3299-3306.
    [36] LI X, SUN G, CHEN S, et al. Molecular Chemodiversity of Dissolved Organic Matter in Paddy Soils[J]. Environmental Science&Technology,2018, 52(3):963-971.
    [37] OHNO T, PARR T B, GRUSELLE M I, et al. Molecular Composition and Biodegradability of Soil Organic Matter:A Case Study Comparing Two NewEngland Forest Types[J]. Environmental Science&Technology,2014, 48(13):7229-7236.
    [38] CHOI J H, KIM Y, LEE Y K, et al. Chemical characterization of dissolved organic matter in moist acidic tussock tundra soil using ultra-high resolution 15T FT-ICR mass spectrometry[J]. Biotechnology and Bioprocess Engineering, 2017, 22(5):637-646.
    [39] MALIK A, GLEIXNER G. Importance of microbial soil organic matter processing in dissolved organic carbon production[J]. FEMS Microbiol Ecol, 2013, 86(1):139-148.
    [40] GLEIXNER G. Soil organic matter dynamics:a biological perspective d erived from the use of compound-specific isotopes studies[J].Ecological Research, 2013, 28(5):683-695.
    [41] KAISER K, KALBITZ K. Cycling downwards-dissolved organic matter in soils[J]. Soil Biology and Biochemistry, 2012, 52:29-32.
    [42] HASSOUNA M, MASSIANI C, DUDAL Y, et al. Changes in water extractable organic matter(WEOM)in a calcareous soil under field conditions with time and soil depth[J]. Geoderma, 2010, 155(1):75-85.
    [43] ROTH V, DITTMAR T, GAUPP R, et al. The Molecular Composition of Dissolved Organic Matter in Forest Soils as a Function of p H and Temperature[J]. Plos One, 2015, 10(e01191883).
    [44] WILLIAMS J S, DUNGAIT J A J, BOL R, et al. Contrasting temperature responses of dissolved organic carbon and phenols leached from soils[J]. Plant and Soil, 2016, 399(1-2):13-27
    [45] DELARUE F, GOGO S, BUTTLER A, et al. Indirect effects of experimental warming on dissolved organic carbon content in subsurface peat[J]. Journal of Soils and Sediments, 2014, 14(11):1800-1805.
    [46] ZIANIS D, MENCUCCINI M. Aboveground net primary productivity of a beech(Fagus moesiaca)forest:a case study of Naousa forest,northern Greece[J]. Tree physiology, 2005, 25(6):713-722.
    [47] BU X, RUAN H, WANG L, et al. Soil organic matter in density fractions as related to vegetation changes along an altitude gradient in the Wuyi Mountains, southeastern China[J]. Applied Soil Ecology, 2012,52:42-47.
    [48] DE FEUDIS M, CARDELLI V, MASSACCESI L, et al. Altitude affects the quality of the water-extractable organic matter(WEOM)from rhizosphere and bulk soil in European beech forests[J]. Geoderma, 2017,302:6-13.
    [49] OHNO T, HE Z, SLEIGHTER R L, et al. Ultrahigh Resolution Mass Spectrometry and Indicator Species Analysis to Identify Marker Components of Soil-and Plant Biomass-Derived Organic Matter Fractions[J]. Environmental Science&Technology, 2010, 44(22):8594-8600.
    [50] KRAUS T, DAHLGREN R A, ZASOSKI R J. Tannins in nutrient dynamics of forest ecosystems-a review[J]. Plant and Soil, 2003, 256(1):41-66.
    [51] HERTKORN N, BENNER R, Frommberger M, et al. Characterization of a major refractory component of marine dissolved organic matter[J].Geochimica et Cosmochimica Acta, 2006, 70(12):2990-3010.
    [52] BUONDONNO A, CAPRA G F, COPPOLA E, et al. Aspects of soil phenolic matter(SPM):An explorative investigation in agricultural,agroforestry, and wood ecosystems[J]. Geoderma, 2014, 213:235-244.
    [53] HASSETT J P. Chemistry. Dissolved natural organic matter as a microreactor[J]. Science, 2006, 311(5768):1723-1724.
    [54] KAISER K, GUGGENBERGER G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils[J].Organic Geochemistry, 2000, 31(7):711-725.
    [55] KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Science,2000, 165(4):277-304.
    [56] ROTH V, DITTMAR T, GAUPP R, et al. Latitude and pH driven trends in the molecular composition of DOM across a north south transect along the Yenisei River[J]. Geochimica et Cosmochimica Acta,2013, 123:93-105.
    [57] SZLAVECZ K, PLACELLA S A, POUYAT R V, et al. Invasive earthworm species and nitrogen cycling in remnant forest patches[J].Applied Soil Ecology, 2006, 32(1):54-62.
    [58] LV J, ZHANG S, WANG S, et al. Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides[J]. Environmental Science&Technology, 2016, 50(5):2328-2336.
    [59]贾华丽,郗敏,孔范龙.土壤溶解性有机质生物降解研究进展[J].生态科学, 2016, 35(2):183-188.
    [60] MARSCHNER B, KALBITZ K. Controls of bioavailability and biodegradability of dissolved organic matter in soils[J]. Geoderma,2003, 113(3):211-235.
    [61] RUMPEL C, EUSTERHUES K, K魻GEL-KNABNER I. Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils[J]. Soil Biology and Biochemistry,2004, 36(1):177-190.
    [62] SLEIGHTER R L, HATCHER P G. The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter[J]. Journal of Mass Spectrometry, 2007, 42(5):559-574.
    [63] HERTKORN N, RUECKER C, MERINGER M, et al. High-precision frequency measurements:indispensable tools at the core of the molecular-levelanalysisofcomplexsystems[J].AnalyticalandBioanalytical Chemistry, 2007, 389(5):1311-1327.
    [64] KIM S, KRAMER R W, HATCHER P G. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram[J]. Analytical Chemistry, 2003, 75(20):5336-5344.
    [65] STENSON A C, LANDING W M, MARSHALL A G, et al. Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry[J].Analytical Chemistry, 2002, 74(17):4397-4409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700