用户名: 密码: 验证码:
纳米ZnO对1株异养硝化-好氧反硝化菌Halomonas sp. KGL1的生物胁迫效应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biological Effects of Zinc Oxide Nanoparticles on Heterotrophic Nitrification and Aerobic Denitrification Bacterium Halomonas sp. KGL1
  • 作者:康兆颜 ; 白洁 ; 郭晓旭 ; 陈琳 ; 胡春辉 ; 李岿然
  • 英文作者:KANG Zhao-Yan;BAI Jie;GUO Xiao-Xu;CHEN Lin;HU Chun-Hui;LI Kui-Ran;College of Environmental Science and Engineering, Ocean University of China;The Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education;College of Life Science, Qingdao Agricultural University;College of Marine Life Science, Ocean University of China;
  • 关键词:纳米ZnO ; 生物胁迫 ; 脱氮 ; 异养硝化-好氧反硝化菌
  • 英文关键词:zinc oxide nanoparticles;;biotic stress;;nitrogen removal;;heterotrophic nitrification and aerobic denitrification bacteria
  • 中文刊名:中国海洋大学学报(自然科学版)
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学环境科学与工程学院;中国海洋大学海洋环境与生态教育部重点实验室;青岛农业大学生命科学学院;中国海洋大学海洋生命学院;
  • 出版日期:2019-11-16
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2019
  • 期:12
  • 基金:国家水体污染控制与治理科技重大专项项目(2013ZX07202-007)资助~~
  • 语种:中文;
  • 页:84-91
  • 页数:8
  • CN:37-1414/P
  • ISSN:1672-5174
  • 分类号:X714;X172
摘要
本文通过纳米ZnO(ZnO-NPs)对具有高效脱氮能力的异养硝化-好氧反硝化菌Halomonas sp. KGL1的短期暴露实验,探讨在不同作用浓度下(0,1,10,50 mg·L~(-1)) ZnO-NPs对菌株的生物胁迫效应。结果表明,ZnO-NPs破坏菌株Halomonas sp. KGL1的细胞膜完整性并改变其粘滞性,使菌株形态结构改变,菌体发生团聚;同时诱导该菌株细胞产生活性氧(Reactive Oxygen Species,ROS),对菌株细胞产生氧化胁迫,进一步损伤菌株细胞,抑制菌株的生长和脱氮能力,且ZnO-NPs浓度越高,该菌株受胁迫程度越强。不同浓度的ZnO-NPs对菌株Halomonas sp. KGL1的NH~+_4-N去除率无显著影响,而其NO~-_3-N、NO~-_2-N的去除效率显著降低。研究结果可为提高海水养殖废水等高盐含氮废水中脱氮菌株的抗ZnO-NPs胁迫能力的理论研究和实际应用提供科学依据。
        In order to understand the biotic stress of ZnO-NPs on Halomonas sp. KGL1, the authors conducted the short-term exposure experiment of ZnO-NPs with different concentrations(0,1,10,50 mg·L~(-1)) on heterotrophic nitrification-aerobic denitrifying bacteria Halomonas sp. KGL1 with high denitrification capacity were conducted in this study. The results showed that the integrity of cell membrane is destroyed by ZnO-NPs. And the cells of the strain can be induced to produce ROS, that produces oxidative stress to damage the cells of the strain, and the growth and denitrification ability are inhibited. The higher the concentration of ZnO-NPs is, the stronger the biotic stress of ZnO-NPs on Halomonas sp. KGL1 is. ZnO-NPs of different concentrations have no significant effect on the removal rate of NH~+_4-N within the range of experimental concentration, but reduced the removal efficiency of NO~-_3-N and NO~-_2-N. The main objective of this study is to provide a scientific basis for the theoretical research and practical application of the ability of denitrifying bacteria to resist ZnO-NPs stress in high-salinity wastewater such as mariculture wastewater.
引文
[1] Maynard A D,Aitken R J,Butz T,et al.Safe handling of nanotechnology[J].Nature,2006,444:267-269.
    [2] Kolodziejczak-Radzimska A,Jesionowski T.Zinc Oxide-From synthesis to application:A review[J].Materials,2014,7(4):2833-2881.
    [3] Xiong H M.ZnO nanoparticles applied to bioimaging and drug delivery[J].Advanced Materials (Deerfield Beach,Fla.),2013,25(37):5329-5335.
    [4] Khataee A,Karimi A,Arefi-Oskoui S,et al.Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17[J].Ultrasonics Sonochemistry,2015,22:371-381.
    [5] Bystrzejewska P G,Golimowski J,Urban P L.Nanoparticles:their potential toxicity,waste and environmental management[J].Waste Management (New York,N.Y.),2009,29(9):2587-2595.
    [6] Adams L K,Lyon D Y,Alvarez P J J.Comparative eco-toxicity of nanoscale TiO2,SiO2,and ZnO water suspensions[J].Water Research,2006,40(19):3527-3532.
    [7] Aruoja V,Dubourguier H C,Kasemets K,et al.Toxicity of nanoparticles of CuO,ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J].Science of the Total Environment,2009,407(4):1461-1468.
    [8] Ma H,Williams P L,Diamond S A.Ecotoxicity of manufactured ZnO nanoparticles:A review[J].Environmental Pollution,2013,172(1):76-85.
    [9] Gottschalk F,Sonderer T,Scholz R W,et al.Modeled environmental concentrations of engineered nanomaterials (TiO2,ZnO,Ag,CNT,Fullerenes) for different regions[J].Environmental Science & Technology,2009,43(24):9216-9222.
    [10] Brar S K,Verma M,Tyagi R D,et al.Engineered nanoparticles in wastewater and wastewater sludge-evidence and impacts[J].Waste Manag,2010,30(3):504-520.
    [11] Fabrega J,Luoma S N,Tyler C R,et al.Silver nanoparticles:Behaviour and effects in the aquatic environment[J].Environment International,2011,37(2):517-531.
    [12] Hou J,Miao L Z,Wang C,et al.Inhibitory effects of ZnO nanoparticles on aerobic wastewater biofilms from oxygen concentration profiles determined by microelectrodes[J].Journal of Hazardous Materials,2014,276:164-170.
    [13] Zhang C,Hu Z,Li P,et al.Governing factors affecting the impacts of silver nanoparticles on wastewater treatment[J].Science of the Total Environment,2016,572:852-873.
    [14] 胡勤政,王成燚,汪跃,等.纳米氧化锌对厌氧污泥中微生物内源代谢产物和膜污染性能的影响[J].环境工程学报,2018,12(6):1609-1618.HU Qin-Zheng,WANG Cheng-Yan,WANG Yue,et al.Effect of ZnO nanoparticles on production and membrane fouling performance of biomass-associated products in anaerobic sludge[J].Chinese Journal of Environmental Engineering,2018,12(6):609-1618.
    [15] Zheng X,Wu R,Chen Y G.Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J].Environmental Science & Technology,2011,45(7):2826-2832.
    [16] Luo Z,Chen Z,Qiu Z,et al.Gold and silver nanoparticle effects on ammonia-oxidizing bacteria cultures under ammoxidation[J].Chemosphere,2015,120:737-742.
    [17] 陈铮,罗专溪,邱昭政,等.纳米金、银对氨氧化细菌及其氨氧化作用的影响[J].中国环境科学,2014,34(3):705-712.CHEN Zheng,LUO Zhuan-Xi,Qiu Zhao-Zheng,et al.Effects of silver and gold nanoparticles on ammonia-oxidizing bacteria and its ammoxidation[J].China Environmental Science,2014,34(3):75-712.
    [18] Michels C,Perazzoli S,H M S.Inhibition of an enriched culture of ammonia oxidizing bacteria by two different nanoparticles:Silver and magnetite[J].Science of the Total Environment,2017,586:995-1002.
    [19] Shahrokh S,Hosseinkhani B,Emtiazi G,et al.The impact of silver nanoparticles on bacterial aerobic nitrate reduction process[J].Journal of Bioprocessing & Biotechniques,2014,4:152.
    [20] Fang X H,Yu R,Li B Q,et al.Stresses exerted by ZnO,CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea[J].Journal of Colloid and Interface Science,2010,348(2):329-334.
    [21] 刘美婷,余冉,陈良辉,等.典型纳米金属氧化物对氨氧化菌Nitrosomonas europaea 的生物胁迫影响[J].中国环境科学,2015,35(1):190-195.LIU Mei-Ting,YU Ran,CHEN Liang-Hui,et al.Biological effects of typical metal oxide nanoparticles on Nitrosomonas europaea[J].China Environmental Science,2015,35(1):90-195.
    [22] Zheng X,Su Y L,Chen Y G,et al.Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity[J].Environmental Science & Technology,2014,48(23):13800-13807.
    [23] Shapovalova A A,Khijniak T V,Tourova T P,et al.Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes[J].Extremophiles Life Under Extreme Conditions,2008,12(5):619-625.
    [24] 李卫芬,傅罗琴,邓斌,等.1株好氧反硝化菌的分离鉴定及反硝化特性研究[J].环境科学,2011,32(8):2403-2408.LI Wei-Fen,FU Luo-Qin,DENG Bin,et al.Identification and denitrification characteristics of an aerobic denitrifier[J].Environmental Science,2011,32(8):403-2408.
    [25] Khare P,Sonane M,Pandey R,et al.Adverse effects of TiO2 and ZnO nanoparticles in soil nematode,caenorhabditis elegans[J].Journal of Biomedical Nanotechnology,2011,7(1):116-117.
    [26] Nair S,Sasidharan A,Rani V V D,et al.Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells[J].Journal of Materials Science Materials in Medicine,2009,20:235-241.
    [27] Zhang L,Jiang Y,Ding Y,et al.Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids)[J].Journal of Nanoparticle Research,2007,9(3):479-489.
    [28] Li M,Zhu L,Lin D.Toxicity of ZnO nanoparticles to Escherichia coli mechanism and the influence of medium components[J].Environmental Science & Technology,2011,45(5):1977-1983.
    [29] Brayner R,Ferrari-lliou R,Brivois N,et al.Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium[J].Nano Letters,2006,6(4):866-870.
    [30] Somasundaran P,Fang X,Ponnurangam S,et al.Nanoparticles:characteristics,mechanisms and modulation of biotoxicity[J].Kona Powder and Particle Journal,2010,28:38-49.
    [31] Bahadar H,Maqbool F,Niaz K,et al.Toxicity of nanoparticles and an overview of current experimental models[J].Iranian Biomedical Journal,2016,20(1):1-11.
    [32] Kumar A,Pandey A K,Singh S S,et al.Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli[J].Free Radical Biology & Medicine,2011,51(10):1872-1881.
    [33] Sakai A,Nakanishi M,Yoshiyama K,et al.Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli[J].Genes to Cells,2006,11(7):767-778.
    [34] Liu G,Wang D,Wang J,et al.Effect of ZnO particles on activated sludge:role of particle dissolution[J].Science of the Total Environment,2011,409(14):2852-2857.
    [35] Zheng X,Su Y,Chen Y.Acute and chronic responses of activated sludge viability and performance to silica nanoparticles[J].Environmental Science & Technology,2012,46(13):7182-7188.
    [36] Gomes T,Pinheiro J P,Cancio I,et al.Effects of copper nanoparticles exposure in the Mussel Mytilus galloprovincialis[J].Environmental Science & Technology,2011,45(21):9356-9362.
    [37] Chang Q,Yan L,Chen M,et al.Bactericidal mechanism of Ag/Al2O3 against Escherichia coli[J].Langmuir,2007,23(22):11197-11199.
    [38] Xia T,Kovochich M,Liong M,et al.Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties[J].ACS Nano,2008,2(10):2121-2134.
    [39] Kocbek P,Teskac K,Kreft M E,et al.Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles[J].Small(Weinheim ander Bergstrosse Germany),2010,6(17):1908-1917.
    [40] Lok C N,Ho C M,Chen R,et al.Proteomic analysis of the mode of antibacterial action of silver nanoparticles[J].Journal of Proteome Research,2006,5(4):916-924.
    [41] Morones J R,Elechiguerra J L,Camacho A,et al.The bactericidal effect of silver nanoparticles[J].Nanotechnology,2005,16(10):2346-2353.
    [42] Choi O,Hu Z.Role of reactive oxygen species in determining nitrification inhibition by metallic/oxide nanoparticles[J].Journal of Environmental Engineering,2009,135(12):1365-1370.
    [43] 李维,石先阳.氧化锌纳米颗粒对SBR中活性污泥脱氮性能及硝化细菌丰度的影响[J].环境工程学报,2017,11(8):4549-4558.LI Wei,SHI Xian-Yang.Effects of ZnO nanoparticles on nitrogen removal performance and nitrifying bacteria abundance of activated sludge in SBR[J].Chinese Journal of Environmental Engineering,2017,1(8):4549-4558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700