用户名: 密码: 验证码:
甘蔗叶片光合CO_2响应参数分析及其品种间差异
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sugarcane Leaf Photosynthetic CO_2 Responses Parameters and Their Difference among Varieties
  • 作者:刘杨杨 ; 李俊 ; 于强 ; 刘少春 ; 同小娟 ; 余凌翔
  • 英文作者:LIU Yang-yang;LI Jun;YU Qiang;LIU Shao-chun;TONG Xiao-juan;YU Ling-xiang;Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research,University of Chinese Academy of Sciences;Chinese Academy of Science and Ministry of Water Resource;Yunnan Agricultural Academy Sugarcane Research Institute;The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University;Climate Center of Yunnan;
  • 关键词:甘蔗 ; 光合CO2响应 ; 叶子飘模型 ; 品种 ; 光合CO2参数
  • 英文关键词:Sugarcane;;Photosynthetic CO2 response;;Ye model;;Varieties;;Photosynthetic CO2 response parameters
  • 中文刊名:中国农业气象
  • 英文刊名:Chinese Journal of Agrometeorology
  • 机构:中国科学院大学地理科学与资源研究所陆地水循环及地表过程重点实验室;中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室;云南省农业科学院甘蔗研究所;北京林业大学林学院;云南省气候中心;
  • 出版日期:2019-10-18
  • 出版单位:中国农业气象
  • 年:2019
  • 期:10
  • 基金:公益性行业(气象)科研专项(GYHY201406030)
  • 语种:中文;
  • 页:35-44
  • 页数:10
  • CN:11-1999/S
  • ISSN:1000-6362
  • 分类号:S566.1
摘要
甘蔗光合作用的CO_2响应是甘蔗生理生态研究的重要内容。作为C4植物的甘蔗具有较高的光合效率,是最重要的糖料作物。为比较不同模型拟合甘蔗CO_2响应曲线的效果,分析不同品种甘蔗光合CO_2响应特性,探究甘蔗光合CO_2响应参数之间的关系,本文使用LI-6400XT光合测定系统在云南开远进行了田间观测,用直角双曲线模型(RH)、非直角双曲线模型(NRH)、叶子飘(Ye)模型拟合6个品种甘蔗光合CO_2响应曲线,并分析光合CO_2响应参数。结果表明:RH和NRH模型拟合的最大光合速率(Amax)偏差较大,且无法得到CO_2饱和点(CSP)。NRH模型拟合的初始羧化速率(η)与实测值最为接近,但得到的呼吸速率(Rp)和CO_2补偿点(CCP)均为负。综合来看叶子飘模型模拟甘蔗叶片光合CO_2响应的效果最佳。Ye模型得到的光合CO_2响应参数中,η与Rp/CCP呈极显著正相关(P<0.01),Rp与η、CCP呈显著正相关(P<0.05),Rp、η与CSP呈显著负相关(P<0.05)。有的品种在低CO_2浓度时表现高光合特性,伴随高呼吸消耗,同时在高浓度CO_2时光合能力较弱,易达到CO_2饱和点。Ye模型得到的6个品种甘蔗的Amax平均值为32.4±4.5mmol·m-2·s-1,η平均值为0.128±0.060,CSP平均值为1152±77mmol·m-2·s-1,CCP平均值为8.5±5.5mmol·m-2·s-1。品种ROC22具有很低的Rp、CCP和最高的Amax,光合特性最好;除YZ99-91外其它5个品种甘蔗的CSP都较大,能适应大气中CO_2浓度的升高。
        Sugarcane(Saccharum officinarum L.)photosynthetic CO_2 response represents an important physiological characteristic for sugarcane growth. Sugarcane is the major sugar crop, exhibiting the characteristic of higher photosynthetic efficiency as a C4 plant. This study was conducted to compare performance of different models of photosynthetic CO_2 response, and to investigate the photosynthetic CO_2 response characteristics of different sugarcane varieties. Field measurements were carried out in Kaiyuan, Yunnan Province, using a portable LI-6400 XT photosynthesis system to explore the correlation between the photosynthetic CO_2 response parameters. The non-rectangular hyperbola model(NRH), rectangular hyperbola model(RH) and Ye model were used to fit the sugarcane photosynthetic CO_2 response curve of six varieties, and the photosynthetic CO_2 response parameters were analyzed. The results showed that the photosynthetic CO_2 response curve fitted by NRH and RH model do not determine CO_2 saturation point(CSP), and overestimate the maximum net photosynthetic rate(Amax). The initial carboxylation rate(η) fitted by NRH model were almost the same as the measured values, but the respiration rate(Rp) and CO_2 compensation point(CCP) fitted by NRH model were both negative. In general, the Ye model was the best in simulating the photosynthetic CO_2 response curves. In the photosynthetic CO_2 response parameters fitted by Ye model, η was significantly correlated(positively) with Rp/CCP(P<0.001), Rp was significantly correlated(positively) with η and CCP(P<0.05), η and Rp were significantly correlated(negatively) with CSP(P<0.05). The varieties with higher photosynthetic rate under low CO_2 concentration tended to have higher respiration rate, meanwhile, they have lower photosynthesis capacity under high CO_2 concentration, which are easier to reach CO_2 saturation point. The average Amax value of six sugarcane varieties fitted by Ye model was 32.4±4.5mmol·m-2·s-1, η was 0.128±0.060, CSP was 1152±77mmol·m-2·s-1 and CCP was 8.5±5.5045mmol·m-2·s-1. ROC22 had lower Rp, and CCP and the highest Amax, indicating the most realistic to represent photosynthetic characteristics. All the five sugarcane varieties except YZ99-91 have large CSP, and could adapt to the increasing CO_2 concentration in the atmosphere.
引文
[1] Valle R,Mishoe J W,Campbell W J,et al.Photosynthetic responses of ‘Bragg’ soybean leaves adapted to different CO2environments[J].Crop Science,1985,25(2):333.
    [2] Baly E C.The kinetics of photosynthesis[J].Proceedings of the Royal Society of London Series B(Biological Sciences),1935,117(804):218-239.
    [3]康华靖,陶月良,权伟,等.植物光合CO2响应模型对光下(暗)呼吸速率拟合的探讨[J].植物生态学报,2014,38(12):1356-1363.Kang H J,Tao Y L,Quan W,et al.Fitting mitochondrial respiration rates under light by photosynthetic CO2 response models[J].Chinese Journal of Plant Ecology,2014,38(12):1356-1363.(in Chinese)
    [4] Thornley J H M.Mathematical models in plant physiology[J].London:Academic Press,1976.
    [5]刘晓萌,于凌飞,黄耀,等.CO2浓度升高下粳稻叶片光合作用对光强变化的响应[J].生态学杂志,2018,37(4):1051-1057.Liu X M,Yu L F,Huang Y,et al.Responses of photosynthesis in leaves of Japonica rice to light intensity at elevated CO2concentration[J].Chinese Journal of Ecology,2018,37(4):1051-1057.(in Chinese)
    [6] Jassby A D,Platt T.Mathematical formulation of the relationship between photosynthesis and light for phytoplankton[J].Limnology and Oceanography,1976,21(4):540-547.
    [7] Ye Z P.A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J].Photosynthetica,2007,45(4):637-640.
    [8] Lobo F D A,Barros M P D,Dalmagro H J,et al.Fitting net photosynthetic light-response curves with Microsoft Excel:a critical look at the models[J].Photosynthetica,2014,52(3):479-480.
    [9] Farquhar G D,Caemmerer S V,Berry J A.A biochemical model of photosynthetic CO2 assimilation in leaves of C3species[J] Planta,1980,149(1):78-90.
    [10] Yin X,Struik P C.The energy budget in C4 photosynthesis:insights from a cell-type-specific electron transport model[J].New Phytologist,2018,218(3):986-998.
    [11] Kyei-Boahen S,Lada R,Astatkie T,et al.Photosynthetic response of carrots to varying irradiances[J].Photosynthetica,2003,41(2):301-305.
    [12] YU Q,Zhang Y Q,Liu Y F,et al.Simulation of the stomatal conductance of winter wheat in response to light,temperature and CO2 changes[J].Annals of Botany,2004,93(4):435-441.
    [13] Leakey A D B,Uribelarrea M,Ainsworth E A,et al.Photosynthesis, productivity,and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought[J].Plant Physiology,2006,140(2):779-790.
    [14]陈兰英,黎云祥,钱一凡,等.改进指数模型对紫茉莉光合-光响应及CO2响应适用性研究[J].广西植物,2013,33(6):839-845.Chen L Y,Li Y X,Qian Y F,et al.Applications studies of the modified exponential model on photosynthesis:light response and CO2 response curves of Mirabilis jalapa[J].Guihaia,2013,33(6):839-845.(in Chinese)
    [15] von Caemmerer S.Steady-state models of photosynthesis[J].Plant,Cell and Environment,2013,36(9):1617-1630.
    [16]叶子飘,于强.光合作用对胞间和大气CO2响应曲线的比较[J].生态学杂志,2009,28(11):2233-2238.Ye Z P,Yu Q.A comparison of response curves of winter wheat photosynthesis to flag leaf intercellular and air CO2concentrations[J].Chinese Journal of Ecology,2009,28(11):2233-2238.(in Chinese)
    [17]马久蓉,高松,闫明,等.野生东北草莓与栽培草莓光合特性的比较[J].江苏农业科学,2018,46(5):132-134.Ma J R,Gao S,Yan M,et al.Comparative study on photosynthetic characteristics between wild Fragaria mandschurica and cultivated strawberry[J].Jiangsu Agricultural Sciences,2018,46(5):132-134.(in Chinese)
    [18] IPCC.Climate change 2013:the physical science basis[R].Cambridge:Cambridge University Press, 2013.
    [19] Knohl A,Veldkamp E.Global change:indirect feedbacks to rising CO2[J].Nature,2011,475(7355):177-8.
    [20] Lambers H,Chapin III F S,Pons T L.Plant physiological ecology[M].Springer,2008:11-144.
    [21]蔡时青,许大全.大豆叶片CO2补偿点和光呼吸的关系[J].植物生理学报,2000,26(6):545-550.Cai S Q,Xu D Q.Relationship between the CO2compensation point and photorespiration in soybean leaves[J].Journal of Plant Physiology and Molecular Biology,2000,26(6):545-550.(in Chinese)
    [22]叶子飘,康华靖.植物光响应修正模型中系数的生物学意义研究[J].扬州大学学报(农业与生命科学版),2012,33(2):51-57.Ye Z P,Kang H J.Study on biological significance of coefficients in modified model of photosynthesisirradiance[J].Journal of Yangzhou University,2012,33(2):51-57.(in Chinese)
    [23] Crafts-Brandner S J,Salvucci M E.Sensitivity of photosynthesis in a C4 plant,maize,to heat stress[J].Plant Physiology,2002,129(4):1773-1780.
    [24]郝祺,陆佩玲,房世波,等.黄淮海地区冬小麦光合作用参数的取值范围[J].中国农业气象,2009,30(1):74-78.Hao Q,Lu P L,Fang S B.Range of parameter values in photosynthesis model of winter wheat in Huang-Huai-Hai areas[J].Chinese Journal of Agrometeorology,2009,30(1):74-78.(in Chinese)
    [25]钟楚,王毅,简少芬,等.云南玉溪烟区两烟草品种叶片光合作用对光和CO2的响应[J].中国农业气象,2010,31(3):436-441.Zhong C,Wang Y,Jian S F,et al.Photosynthetic response to light and CO2 of two tobacco cultivars in Yuxi of Yunnan province[J].Chinese Journal of Agrometeorology,2010,31(3):436-441.(in Chinese)
    [26] Moore P H,Botha F C.Physiology,biochemistry and functional biology of sugarcane[M].Wiley-Blackwell,New Jersey,2014:121-325.
    [27] Irvine J E.Sugar-cane[A].Potential productivity of field crops under different environments[C].IRRI,Los Banos,Philippines,1983:361-381.
    [28]刘建波,彭懿,陈秋波.海南甘蔗种植的气候适宜性分析及区划[J].中国农业气象,2009,30(S2):254-256.Liu J B,Peng Y,Chen Q B.Climate suitability and regionalization of sugar cane cultivation in Hainan[J].Chinese Journal of Agrometeorology,2009,30(S2):254-256.(in Chinese)
    [29]李永秀,杨再强,张富存.光合作用模型在长江下游冬麦区的适用性研究[J].中国农业气象,2011,32(4):588-592.Li Y X,Yang Z Q,Zhang F C.Applicability of different photosynthesis models for winter wheat in the lower Yangtze River[J].Chinese Journal of Agrometeorology,2011,32(4):588-592.(in Chinese)
    [30]钟楚,朱勇.几种光合作用光响应模型对烟草的适用性分析[J].中国农业气象,2013,34(1):74-80.Zhong C,Zhu Y.Applicability analysis about different photosynthetic light response models for tobacco[J].Chinese Journal of Agrometeorology,2013,34(1):74-80.(in Chinese)
    [31] Ogren E.Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth[J].Plant Physiology,1993,101(3):1013-1019.
    [32] Johnson I R,Parsons A J,Ludlow M M.Modelling photosynthesis in monocultures and mixtures[J].Australian Journal of Plant Physiology,1989,16(6):501-516.
    [33] Koyama K,Kikuzawa K.Geometrical similarity analysis of photosynthetic light response curves,light saturation and light use efficiency[J].Oecologia,2010,164(1):53-63.
    [34] Calama R,Puertolas J,Madrigal G,et al.Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration[J].Ecological Modelling,2013,251:9-21.
    [35]任博,李俊,同小娟,等.太行山南麓栓皮栎和刺槐光合作用-CO2响应模拟[J].应用生态学报,2018,29(1):1-10.Ren B,Li J,Tong X J,et al.Simulation on photosynthetic-CO2response of Quercus variabilis and Robinia pseudoacacia in the southern foot of the Taihang Mountain,China[J].Chinese Journal of Applied Ecology,2018,29(1):1-10.(in Chinese)
    [36]李丽霞,刘济明,黄小龙,等.不同氮素条件米槁幼苗光合作用对CO2响应特征[J].东北农业大学学报,2017,48(2):29-36.Li L X,Liu J M,Huang X L,et al.Response characteristic of Cinnamomum migao seedling's photosynthesis to CO2 in different conditions of nitrogen[J].Journal of Northeast Agricultural University,2017,48(2):29-36.(in Chinese)
    [37] H?usler R E,Kleines M,Uhrig H,et al.Overexpression of phosphoenolpyruvate carboxylase from Corynebacterium glutamicum lowers the CO2 compensation point(Γ*)and enhances dark and light respiration in transgenic potato[J].Journal of Experimental Botany,1999,50(336):1231-1242.
    [38] Medrano H,Keys A J,Lawlor D W,et al.Improving plant production by selection for survival at low CO2concentrations[J].Journal of Experimental Botany,1995,46(special):1389-1396.
    [39] Zhao P F,Xia H M,Yang K,et al.Sugarcane yield components and sugar content in ROC22 progeny populations[J].International Sugar Journal,2016,118(1406):26-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700