用户名: 密码: 验证码:
万顺铅锌矿区蜈蚣草内生细菌砷氧化基因(aox B)的多样性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diversity of arsenic oxide gene(aoxB) in endophytic bacteria of Pteris vittata in a Pb-Zn mining area in Wanshun
  • 作者:孙一好 ; 陆巧灵 ; 高雪 ; 尼玛扎西 ; 周敬明 ; 王蓥燕 ; 张小平 ; 辜运富
  • 英文作者:SUN Yi-Hao;LU Qiao-Ling;GAO Xue;Nima Tashi;ZHOU Jing-Ming;WANG Ying-Yan;ZHANG Xiao-Ping;GU Yun-Fu;Department of Microbiology, College of Resources, Sichuan Agricultural University;Rice Institute, Sichuan Agriculture University;Institute of Agricultural Resources and Environment, Tibet Academy of Agricultural and Animal Husbandry Science;
  • 关键词:铅锌矿区 ; 蜈蚣草 ; 内生细菌 ; aoxB ; 多样性
  • 英文关键词:Pb-Zn mining area;;Pteris vittata;;Endophytic bacteria;;aoxB;;Diversity
  • 中文刊名:微生物学通报
  • 英文刊名:Microbiology China
  • 机构:四川农业大学资源学院微生物系;四川农业大学水稻研究所;西藏自治区农牧科学院农业资源与环境研究所;
  • 出版日期:2019-03-19 10:31
  • 出版单位:微生物学通报
  • 年:2019
  • 期:09
  • 基金:中国西藏自治区科技厅科技计划课题(2017B-1)~~
  • 语种:中文;
  • 页:71-81
  • 页数:11
  • CN:11-1996/Q
  • ISSN:0253-2654
  • 分类号:X172;X53
摘要
【背景】近年来,由于金属矿的开采和冶炼、砷产品的加工与使用、煤的燃烧等各种因素,导致土壤环境中的砷污染越来越严重,导致许多人暴露于极度危险的砷毒毒害之下。【目的】研究四川的万顺铅锌矿区蜈蚣草根组织内生细菌aoxB基因的多样性,为提高土壤重金属污染生态修复效率提供理论依据。【方法】利用实时荧光定量PCR (Real-time quantitative PCR,qPCR)和限制性片段长度多态性(Restriction fragment length polymorphism,RFLP)技术,对四川省汉源县万顺铅锌矿区蜈蚣草根组织内生细菌aoxB基因表达量及多样性进行研究。【结果】qPCR结果表明,不同采样点间的蜈蚣草根组织内生细菌aoxB基因表达量存在明显差异,表现为选矿区>进山口>弃渣场>尾矿区>矿口。酶切图谱结果表明,不同采样点蜈蚣草根组织内生细菌aoxB基因多样性存在明显差异,多样性指数表现为尾矿>矿口>弃渣场>进山口>选矿区。Pearson相关分析显示,aoxB基因的表达量与重金属As之间呈显著负相关(P<0.05),多样性指数则与重金属Pb和As之间呈极显著正相关(P<0.01)。系统发育分析显示,aoxB基因的优势菌群为α-变形菌门(Alphaproteobacteria)。【结论】蜈蚣草根组织中存在丰富的含aoxB基因内生细菌种群,这些内生细菌表现出潜在的应用价值。
        [Background] In recent years, due to the mining and smelting of metal ores, the processing and use of arsenic products, the burning of coal and other factors, arsenic pollution in the soil environment has become more and more serious, causing many people to be exposed to extremely dangerous arsenic poisoning. [Objective] To study the diversity of endophytic bacteria aoxB gene in Pteris vittata root of Wanshun Pb-Zn mining area in Sichuan, and provide a theoretical basis for improving the efficiency of soil heavy metal pollution ecological restoration. [Methods] Real-time quantitative PCR(qPCR) and restriction fragment length polymorphism(RFLP) were used to study the abundance and diversity of arsenic oxidation gene(aoxB) of the endophytic bacteria in Pteris vittata root which were isolated from a Pb-Zn mining area in Hanyuan of Sichuan province, China. [Results] The results of QPCR showed that there was a significant difference in the expression of aoxB genes between the different sampling sites. The abundance aoxB gene were in the order of dressing area>entrance to the mountain>spoil area>mine tailings>mine mouth. The RFLP results showed that there were significant differences in the diversity index of the aoxB gene of endophytic bacteria among different sampling sites, and the diversity index of the species were in the order of mine tailings>mine mouth>spoil area>outside mine area>mine mouth. Pearson correlation analysis showed that the abundance of aoxB genes was negatively correlated with concentration of As(P<0.05), and the diversity index was positively correlated with concentration of Pb and As(P<0.01). Phylogenetic analysis showed that aoxB containing endophytic bacteria in the Pteris vittata were mainly belonged to Alphaproteobacteria. [Conclusion] The results showed that there were abundant endophytic bacterial populations containing aoxB gene in Pteris vittata root, and these endophytic bacteria showed potential application value.
引文
[1] Yang JH. Research advance in bioremediation of soil polluted by arsenic[J]. Acta Agriculturae Jiangxi, 2012, 24(3):125-127,134(in Chinese)杨金红.砷污染土壤的生物修复研究进展[J].江西农业学报,2012, 24(3):125-127,134
    [2] Luo T, Sun JX, Xia K. A research review of arsenic pollution in soil[J]. Environment and development, 2017, 29(8):11-12(in Chinese)罗婷,孙健雄,夏科.土壤砷污染研究综述[J].环境与发展,2017, 29(8):11-12
    [3] Ren CQ, Zhang Y, Yang M. Research progress in soil arsenic pollution remediation technology[J]. Environmental Protection and Circular Economy, 2014, 34(6):30-33(in Chinese)任春强,张云,杨明.土壤砷污染修复技术研究进展[J].环境保护与循环经济, 2014, 34(6):30-33
    [4] Ran JW, Zhang X, Ning P, et al. Advances in soil remediation polluted by arsenic in different kinds of farmland[J].Environmental Science Survey, 2017, 36(3):80-86(in Chinese)冉继伟,张旭,宁平,等.不同耕地类型中砷污染修复方式研究进展[J].环境科学导刊, 2017, 36(3):80-86
    [5] Huang YF, Chen GF, Xiong LM, et al. A review of soil heavy metal pollution status of cultivated land and analysis of phytoremediation application[J]. Journal of Anhui Agricultural Sciences, 2015, 43(26):88-89(in Chinese)黄雁飞,陈桂芬,熊柳梅,等.耕地土壤重金属污染现状及植物修复的应用[J].安徽农业科学, 2015, 43(26):88-89
    [6] Shen HL, He ZY, Ma M. Advance of the mechanisms of arsenic hyperaccumulation in Pteris vittata L. and applications for arsenic-remediation[J]. Plant Physiology Journal, 2014, 50(5):591-598(in Chinese)申红玲,何振艳,麻密.蜈蚣草砷超富集机制及其在砷污染修复中的应用[J].植物生理学报, 2014, 50(5):591-598
    [7] Liu WJ, Zhao FJ. A brief review of arsenic uptake and metabolism in plants[J]. Environmental Chemistry, 2011, 30(1):56-62(in Chinese)刘文菊,赵方杰.植物砷吸收与代谢的研究进展[J].环境化学, 2011, 30(1):56-62
    [8] Chen TB, Wei CY, Huang ZC, et al. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation[J]. Chinese Science Bulletin, 2002, 47(11):902-905(in Chinese)陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报, 2002, 47(3):207-210
    [9] Wang HJ, Ning P, Zhang ZB, et al. Pretreatment of arsenic gold ore by Pteris vittata L.[J]. Journal of Wuhan University of Technology, 2010, 32(8):59-63(in Chinese)王海娟,宁平,张泽彪,等.含砷金矿的蜈蚣草除砷预处理初步研究[J].武汉理工大学学报, 2010, 32(8):59-63
    [10] Hallmann J, Morgenroth W, Paulmann C, et al. Time-resolved X-ray diffraction of the photochromicα-styrylpyrylium trifluoromethanesulfonate crystal films reveals ultrafast structural switching[J]. Journal of the American Chemical Society, 2009, 131(41):15018-15025
    [11] Luo MY, Lu XJ, Liao XL. Research advances on application of endophytic bacteria[J]. Modern Agricultural Sciences and Technology, 2010(7):11-12,16(in Chinese)罗茗月,路雪君,廖晓兰.植物内生细菌的应用研究进展[J].现代农业科技, 2010(7):11-12,16
    [12] Liu LH, Liu SJ, Chen FM, et al. Effect of endophytic bacteria inoculation on cadmium uptake in Solanum nigrum L.[J]. Acta Scientiae Circumstantiae, 2013, 33(12):3368-3375(in Chinese)刘莉华,刘淑杰,陈福明,等.接种内生细菌对龙葵吸收积累镉的影响[J].环境科学学报, 2013, 33(12):3368-3375
    [13] Zhang XC. Isolation and identification of endophytes from Sedum alfredii and the mechanisms of their enhancement on heavy metal hyperaccumulation[D]. Hangzhou:Doctoral Dissertation of Zhejiang University, 2012(in Chinese)张新成.东南景天内生菌分离鉴定及其强化重金属超积累效应与机制[D].杭州:浙江大学博士学位论文, 2012
    [14] Ma Y, Rajkumar M, Luo YM, et al. Inoculation of endophytic bacteria on host and non-host plants—Effects on plant growth and Ni uptake[J]. Journal of Hazardous Materials, 2011, 195:230-237
    [15] Yang J, Zhu YG. Progress in study of mechanisms of microbial arsenic transformation in environment[J]. Asian Journal of Ecotoxicology, 2009, 4(6):761-769(in Chinese)杨婧,朱永官.微生物砷代谢机制的研究进展[J].生态毒理学报, 2009, 4(6):761-769
    [16] Wang GJ, Huang YY, Li J. Bacteria live on arsenic——analysis of microbial arsenic metabolism-A review[J]. Acta Microbiologica Sinica, 2011, 51(2):154-160(in Chinese)王革娇,黄银燕,李洁.“吃”砒霜的细菌——解析微生物的砷代谢[J].微生物学报, 2011, 51(2):154-160
    [17] Zhao K. Gene function and regulation of arsenite oxidase in arsenite-oxidizing bacteria-Acidovorax spp.[D]. Wuhan:Master’s Thesis of Huazhong Agricultural University, 2010(in Chinese)赵凯.食酸菌属中三价砷氧化细菌As(Ⅲ)氧化酶基因和调控基因的功能研究[D].武汉:华中农业大学硕士学位论文,2010
    [18] Weeger W, Lièvremont D, Perret M, et al. Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment[J]. Biometals, 1999, 12(2):141-149
    [19] Cai L, Wang GJ. Advance on studies of arsenic-resistant microorganisms and molecular mechanisms[J]. Microbiology China, 2009, 36(8):1253-1259(in Chinese)蔡林,王革娇.抗砷性微生物及其抗砷分子机制研究进展[J].微生物学通报, 2009, 36(8):1253-1259
    [20] Wang GJ, Wang Q, Chen F, et al. Research progress of microbial arsenite oxidation regulation[J]. Journal of Microbiology, 2014, 34(5):1-7(in Chinese)王革娇,王倩,陈芳,等.微生物砷氧化调控研究进展[J].微生物学杂志, 2014, 34(5):1-7
    [21] Han YH, Wang SS. Arsenic resistance mechanisms in microbes and their roles in arsenic geochemical cycling-A review[J]. Acta Microbiologica Sinica, 2016, 56(6):901-910(in Chinese)韩永和,王珊珊.微生物耐砷机理及其在砷地球化学循环中的作用[J].微生物学报, 2016, 56(6):901-910
    [22] Cao K, Wang XN, Sun YF, et al. Research progress on endophytic bacterial diversity and biocontrol of plant roots[J].Agriculture&Technology, 2017, 37(17):1-3,5(in Chinese)曹焜,王晓楠,孙宇峰,等.植物根部内生细菌多样性及其生防作用研究进展[J].农业与技术, 2017, 37(17):1-3,5
    [23] Zhang J, Zhang HW, Li XY, et al. Soil microbial ecological process and microbial functional gene diversity[J]. Chinese Journal of Applied Ecology, 2006, 17(6):1129-1132(in Chinese)张晶,张惠文,李新宇,等.土壤微生物生态过程与微生物功能基因多样性[J].应用生态学报, 2006, 17(6):1129-1132
    [24] Zheng YK, Ren D, Lu SE, et al. Diversity and community structure of endophytic actinomycetes of Pteris vittata in a Pb-Zn mining area[J]. Acta Scientiae Circumstantiae, 2014,34(11):2832-2838(in Chinese)郑有坤,任丹,卢圣鄂,等.铅锌矿区蜈蚣草内生放线菌的多样性及群落结构[J].环境科学学报, 2014, 34(11):2832-2838
    [25] Tian XL, Cao LX, Tan HM, et al. Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice[J]. Microbial Ecology, 2007, 53(4):700-707
    [26] Quéméneur M, Heinrich-Salmeron A, Muller D, et al. Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2008, 74(14):4567-4573
    [27] Gu Q, Xu YL, Wei W, et al. The establishment of the real-time PCR system for detecting soil bacteria abundance[J]. Soil and Crop, 2012, 1(2):117-120(in Chinese)顾卿,许艳丽,魏巍,等.土壤细菌群落密度实时荧光定量PCR检测体系的建立[J].土壤与作物, 2012, 1(2):117-120
    [28] Giloteaux L, Holmes DE, Williams KH, et al. Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation[J]. The ISME Journal,2013, 7(2):370-383
    [29] Hill T, Motte F, Didelon P, et al. Filaments and ridges in vela C revealed by Herschel:from low-mass to high-mass star-forming sites[J]. Astronomy&Astrophysics, 2011, 533:A94
    [30] Wei CY, Zheng H, Sun X, et al. Characteristics of arsenic enrichment by plants of Pteris vittata different in source and their phytoremediation efficiency[J]. Soils, 2008, 40(3):474-478(in Chinese)韦朝阳,郑欢,孙歆,等.不同来源蜈蚣草吸收富集砷的特征及植物修复效率的探讨[J].土壤, 2008, 40(3):474-478
    [31] Pan ZM, Deng TL. A review of researches on Pteris vittata phytoremediation of arsenic polluted soils[J]. Soils, 2007,39(3):341-346(in Chinese)潘志明,邓天龙.砷污染土壤的蜈蚣草修复研究进展[J].土壤, 2007, 39(3):341-346
    [32] Xu D. Cadmium-induced gene expression for heavy metal transport in barley[D]. Changchun:Master’s Thesis of Northeast Normal University, 2009(in Chinese)许多.镉诱导大麦重金属转运基因的表达[D].长春:东北师范大学硕士学位论文, 2009
    [33] Robert-Seilaniantz A, Grant M, Jones JDG. Hormone crosstalk in plant disease and defense:more than just jasmonate-salicylate antagonism[J]. Annual Review of Phytopathology, 2011, 49(1):317-343
    [34] Diao S, Su XH, Ding CJ, et al. Cloning and expression analysis of PsCCH from Populus simonii under stresses of heavy metal[J]. Forest Research, 2015, 28(1):32-36(in Chinese)刁姝,苏晓华,丁昌俊,等.小叶杨CCH基因的克隆及其在重金属胁迫下的表达模式[J].林业科学研究, 2015, 28(1):32-36
    [35] Wang HZ, Li J. Effect of cadmium ion and Lead ion induced stress on anti-oxidative genes expression in perennial ryegrass cells[J]. Journal of Agro-Environment Science, 2008, 27(6):2371-2376(in Chinese)王慧忠,李鹃.重金属镉、铅对多年生黑麦草细胞内几种抗氧化酶基因表达的影响[J].农业环境科学学报, 2008, 27(6):2371-2376
    [36] Wang N, Lu XL, Wu MXJ, et al. Progress in microbial oxidation of As(Ⅲ)and Sb(Ⅲ)[J]. Microbiology China, 2017,44(3):689-700(in Chinese)王年,鲁小璐,邬梦晓俊,等.微生物氧化As(Ⅲ)和Sb(Ⅲ)的研究进展[J].微生物学通报, 2017, 44(3):689-700
    [37] Inskeep WP, Macur RE, Hamamura N, et al. Detection,diversity and expression of aerobic bacterial arsenite oxidase genes[J]. Environmental Microbiology, 2007, 9(4):934-943
    [38] Xiao JF. Study on removal and its mechanism of heavy metals by Acidithiobacillus ferrooxidans in steel-picking sulfuric acid pickling waste liquor[D]. Tianjin:Master’s Thesis of Tianjin University of Technology, 2014(in Chinese)肖菊芳.钢铁硫酸洗废液中嗜酸性氧化亚铁硫杆菌对重金属的去除及机理研究[D].天津:天津理工大学硕士学位论文, 2014
    [39] Chen B. The effects and mechanisms of endophytic bacteria promoting Zn/Cd phytoextraction by Sedum alfredii[D].Hangzhou:Doctoral Dissertation of Zhejiang University, 2015(in Chinese)陈宝.内生细菌促进东南景天Zn/Cd的提取效应及其机制研究[D].杭州:浙江大学博士学位论文, 2015
    [40] Niu HB, Liu WX, Wan FH, et al. Screening, identification, and antagonism assessment of dominant bacteria in Ageratina adenophora Sprengel rhizosphere soil[J]. Chinese Journal of Applied Ecology, 2007, 18(12):2795-2800(in Chinese)牛红榜,刘万学,万方浩,等.紫茎泽兰根际土壤中优势细菌的筛选鉴定及拮抗性能评价[J].应用生态学报, 2007,18(12):2795-2800
    [41] Yang JS, Yang Y, Sun LM, et al. Characterization of soil fungal community in response to heavy metal pollution in Lead-Zinc mining area[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(2):387-396(in Chinese)杨金水,杨扬,孙良明,等.铅锌矿区土壤真菌响应重金属污染的群落组成变化[J].北京大学学报:自然科学版, 2017,53(2):387-396
    [42] Xie XH, Fan FX, Yuan XW, et al. Impact on microbial diversity of heavy metal pollution in soils near Dexing copper mine tailings[J]. Microbiology China, 2012, 39(5):624-637(in Chinese)谢学辉,范凤霞,袁学武,等.德兴铜矿尾矿重金属污染对土壤中微生物多样性的影响[J].微生物学通报, 2012, 39(5):624-637

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700