用户名: 密码: 验证码:
海洋最小含氧带氮流失过程与机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process and mechanism of nitrogen loss in the ocean oxygen minimum zone
  • 作者:田东凡 ; 李学刚 ; 宋金明 ; 李宁
  • 英文作者:TIAN Dong-fan;LI Xue-gang;SONG Jin-ming;LI Ning;Key Laboratory of Marine Ecology and Environmental Science,Institute of Oceanology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Qingdao National Laboratory for Marine Science and Technology;Center for Ocean Mega-Science,Chinese Academy of Sciences;
  • 关键词:最小含氧带 ; 氮流失 ; 反硝化 ; 厌氧氨氧化
  • 英文关键词:oxygen minimum zone(OMZ);;nitrogen loss;;denitrification;;anammox
  • 中文刊名:应用生态学报
  • 英文刊名:Chinese Journal of Applied Ecology
  • 机构:中国科学院海洋研究所海洋生态与环境科学重点实验室;中国科学院大学;青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室;中国科学院海洋大科学研究中心;
  • 出版日期:2019-01-04 15:49
  • 出版单位:应用生态学报
  • 年:2019
  • 期:03
  • 基金:科技基础资源调查专项(2017FY100802);; 青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2016ASKJ14);; 中国科学院战略性先导科技专项(XDA11030202)资助~~
  • 语种:中文;
  • 页:340-349
  • 页数:10
  • CN:21-1253/Q
  • ISSN:1001-9332
  • 分类号:X145
摘要
对全球大洋氮循环的研究发现,大洋输入和输出的氮存在严重的不平衡,所固定的氮中有相当一部分被还原为N_2或N_2O从大洋中流失,而海洋最小含氧带(OMZ)被认为是发生氮流失的最主要区域,通过反硝化作用和厌氧氨氧化作用,固定氮在OMZ海区内损失量可达40~450 Tg·a~(-1).对不同海区OMZ内固定氮损失的两种主要作用总结发现,异养反硝化作用在热带太平洋东部、阿拉伯海的OMZ内以及海洋沉积物内占有显著优势,在智利、秘鲁沿岸海域及阿拉伯海域也已发现自养反硝化作用的存在;而在黑海、非洲西南部的本格拉上升流、智利北部沿岸等地,厌氧氨氧化作用强烈,且其在陆架区的作用强度和面积要大于大洋区.OMZ氮的流失除受氮流失过程自身影响外,固氮作用、硝化作用、硝酸盐异化还原作用等都可能对OMZ海区内氮收支不平衡造成影响.其中固氮作用的影响最不能忽视,其在全球OMZ内固定的氮的总量可达15~40 Tg·a~(-1),是对OMZ氮流失量的重要补充.区分反硝化作用和厌氧氨氧化作用对OMZ氮流失的相对贡献,明确氮流失的另一产物N_2O的形成机制和定量评估方法是当前OMZ氮流失研究中存在的最主要问题.本文针对存在问题提出了相应的研究设想,以期为海洋最小含氧带的研究提供参考.
        There is a big imbalance between the input and output of oceanic nitrogen in global ocean nitrogen cycles, because a part of the fixed nitrogen is reduced to N_2 or N_2O and then lost from the ocean. Oxygen minimum zone(OMZ) is the most important area for nitrogen loss, which could lose fixed nitrogen up to 40 to 450 Tg·a~(-1) through the denitrification and anammox. A summary of the two main roles of nitrogen loss in the different OMZ sea areas reveals that heterotrophic denitrification dominates in eastern tropical Pacific, Arabian Sea, and marine sediments. The autotrophic denitrification has been found in Chile, Peru's coastal waters, and Arabian waters. In the Black Sea, the Benguela upwelling in southwestern Africa, and the northern coast of Chile, anaerobic ammonia oxidation is strong, with greater effects on the continental shelf than that in the ocean. In addition to the loss of nitrogen, nitrogen fixation, nitrification, and dissimilatory nitrate reduction to ammonium may affect the imbalance of nitrogen budget in the OMZ. The effects of nitrogen fixation can't be ignored. The total amount of nitrogen fixed in the global OMZ can reach 15-40 Tg·a~(-1), which is an important supplement to the loss of nitrogen in OMZ. Disentangling the relative contribution of denitrification and anammox to the loss of nitrogen, ascertaining the formation mechanism and quantitative evaluation method of N_2O(another product of nitrogen loss) are the most important challenges in the current study of OMZ. Focusing on the existing problems, we put forward corresponding research ideas with references for related studies of the OMZs in the ocean.
引文
[1] Canfield DE, Glazer AN, Falkowski PG. The evolution and future of Earth’s nitrogen cycle. Science, 2010, 330: 192-196
    [2] Ma J (马骏), Song J-M (宋金明), Li X-G (李学刚), et al. Research progress on oceanic seamounts and their eco-environmental characteristics. Marine Sciences (海洋科学), 2018, 42(2): 1-15 (in Chinese)
    [3] Keeling RE, Kortzinger A, Gruber N. Ocean deoxygena-tion in a warming world. Annual Review of Marine Science, 2010, 2: 199-229
    [4] Karstensen J, Stramma L, Visbeck M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Progress in Oceanography, 2008, 77: 331-350
    [5] Cline JD, Richards FA. Oxygen deficient conditions and nitrate reduction in the eastern tropical North Pacific Ocean. Limnology and Oceanography, 1972, 17: 885-900
    [6] Li X-G (李学刚), Song J-M (宋金明), Yuan H-M (袁华茂), et al. The oxygen minimum zones (OMZs) and its eco-environmental effects in ocean. Marine Sciences (海洋科学), 2017, 41(12):127-138 (in Chinese)
    [7] Wang Q, Ni B, Lemaire R, et al. Modeling of nitrous oxide production from nitritation reactors treating real anaerobic digestion liquor. Scientific Reports, 2016, 6: 25336. doi: 10.1038/srep25336
    [8] Lam P, Kuypers MM. Microbial nitrogen cycling processes in oxygen minimum zones. Annual Review of Marine Science, 2011, 3: 317-345
    [9] Kumar M, Lin J. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal: Strategies and issues. Journal of Hazardous Materials, 2010, 178: 1-9
    [10] Codispoti LA. An oceanic fixed nitrogen sink exceeding 400 Tg Na-1 vs the concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences, 2007, 4: 233-253
    [11] Galloway JN, Dentener FJ, Capone DG, et al. Nitrogen cycles: Past, present, and future. Biogeochemistry, 2004, 70: 153-226
    [12] Bristow LA, Callbeck CM, Larsen M, et al. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nature Geoscience, 2017, 10: 24-29
    [13] Devries T, Deutsch C, Primeau F, et al. Global rates of water-column denitrification derived from nitrogen gas measurements. Nature Geoscience, 2012, 5: 547-550
    [14] Bulow SE, Rich JJ, Naik HS, et al. Denitrification exceeds anammox as a nitrogen loss pathway in the Arabian Sea oxygen minimum zone. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57: 384-393
    [15] Kuypers MMM, Lavik G, Woebken D, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. PNAS, 2005, 102: 6478-6483
    [16] Gruber N, Sarmiento JL. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochemical Cycles, 1997, 11: 235-266
    [17] Codispoti LA, Brandes JA, Christensen JP, et al. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene? Scientia Marina, 2001, 65: 85-105
    [18] Sommer S, Gier J, Treude T, et al. Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 112: 113-122
    [19] Kuypers MMM, Sliekers AO, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 2003, 422: 608-611
    [20] Dalsgaard T, Thamdrup B, Farias L, et al. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnology and Oceanography, 2012, 57: 1331-1346
    [21] Lin H (林华). Research progress in nitrogen and oxygen isotopic composition of marine nitrous oxide. Marine Environmental Science (海洋环境科学), 2016, 35(6): 954-960 (in Chinese)
    [22] Lam P, Lavik G, Jensen MM, et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. PNAS, 2009, 106: 4752-4757
    [23] Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Micro-biology, 2002, 68: 1312-1318
    [24] Engstrom P, Dalsgaard T, Hulth S, et al. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments. Geochimica et Cosmochimica Acta, 2005, 69: 2057-2065
    [25] Hong Y-G (洪义国). Marine nitrogen cycle recorded by nitrogen and oxygen isotope fractionation of nitrate. Advances in Earth Science (地球科学进展), 2013, 28(7): 751-764 (in Chinese)
    [26] Bohlen L, Dale AW, Sommer S, et al. Benthic nitrogen cycling traversing the Peruvian oxygen minimum zone. Geochimica et Cosmochimica Acta, 2011, 75: 6094-6111
    [27] Dale AW, Sommer S, Ryabenko E, et al. Benthic nitrogen fluxes and fractionation of nitrate in the Mauritanian oxygen minimum zone (Eastern Tropical North Atlantic). Geochimica et Cosmochimica Acta, 2014, 134: 234-256
    [28] Schunck H, Lavik G, Desai DK, et al. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy. PLoS One, 2013, 8(8): e686618, doi: 10.1371/journal.pone.0068661
    [29] Pitcher GC, Probyn TA. Seasonal, sub-seasonal and spatial fluctuations in oxygen-depleted bottom waters in an embayment of an eastern boundary upwelling system: St Helena Bay. Biogeosciences Discussions, 2015, 12: 13283-13309
    [30] Mulder A, van de Graaf, Robertson LA, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 1995, 16: 177-184
    [31] Capone DG, Knapp AN. Oceanography: A marine nitrogen cycle fix? Nature, 2007, 445: 159-160
    [32] Arrigo KR. Marine microorganisms and global nutrient cycles. Nature, 2005, 437: 349-355
    [33] Dalsgaard T, Canfield DE, Petersen J, et al. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature, 2003, 422: 606-608
    [34] Nakamura T, Harigaya Y, Kimura Y, et al. Quantitative evaluation of inhibitory effect of various substances on anaerobic ammonia oxidation (anammox). Journal of Bioscience & Bioengineering, 2017, 124: 333-338
    [35] Brin LD, Giblin AE, Rich JJ. Similar temperature responses suggest future climate warming will not alter partitioning between denitrification and anammox in temperate marine sediments. Global Change Biology, 2017, 23: 331-340
    [36] Kartal B, Kuypers MMM, Lavik G, et al. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology, 2007, 9: 635-642
    [37] Li X (李祥), Ma H (马航), Huang Y (黄勇), et al. Characteristics of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of high nitrate in water. Environmental Science (环境科学), 2016, 37(7): 2646-2651 (in Chinese)
    [38] Sayama M, Risgaard-Petersen N, Nielsen LP, et al. Impact of bacterial NO3- transport on sediment biogeochemistry. Applied and Environmental Microbiology, 2005, 71: 7575-7577
    [39] Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16: 263-276
    [40] White AE, Foster RA, Benitez-Nelson CR, et al. Nitrogen fixation in the Gulf of California and the Eastern Tropical North Pacific. Progress in Oceanography, 2013, 109: 1-17
    [41] Gier J, Sommer S, Loescher CR, et al. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone. Biogeosciences, 2016, 13: 4065-4080
    [42] Loescher CR, Grosskopf T, Desai FD, et al. Facets of diazotrophy in the oxygen minimum zone waters off Peru. ISME Journal, 2014, 8: 2180-2192
    [43] Deutsch C, Sarmiento JL, Sigman DM, et al. Spatial coupling of nitrogen inputs and losses in the ocean. Nature, 2007, 445: 163-167
    [44] Ding C-L (丁昌玲), Sun J (孙军), Zhou F (周峰). The quantities and distributions of nitrogen-fixing cyanobacteria along hypoxia area and adjacent waters in the East China Sea. Transactions of Oceanology and Limnology (海洋湖沼通报), 2012(4): 177-188 (in Chinese)
    [45] Jayakumar A, Chang BX, Widner B, et al. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean. ISME Journal, 2017, 11: 2356-2367
    [46] Cheung S, Xia X, Guo C, et al. Diazotroph community structure in the deep oxygen minimum zone of the Costa Rica Dome. Journal of Plankton Research, 2016, 38: 380-391
    [47] Lavik G, Stuehrmann T, Bruechert V, et al. Detoxification of sulphidic African shelf waters by blooming chemo-lithotrophs. Nature, 2009, 457: 581-586
    [48] Mehta MP, Baross JA. Nitrogen fixation at 92 degrees C by a hydrothermal vent archaeon. Science, 2006, 314: 1783-1786
    [49] Grundle DS, Loescher CR, Krahmann G, et al. Low oxygen eddies in the eastern tropical North Atlantic: Implications for N2O cycling. Scientific Reports, 2017, 7: 4806, https://doi.org/10.1038/s41598-017-04745-y
    [50] Liu J (刘建), Zhan L-Y (詹力扬), Zhang J-X (张介霞). Contribution of ammonia oxidizing archaea and ammonia oxidizing bacteria in the mechanism of N2O formation in ocean. Marine Environmental Science (海洋环境科学), 2017, 36(6): 947-955 (in Chinese)
    [51] Liu J-J (刘晶静), Wu W-X (吴伟祥), Ding Y (丁颖), et al. Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling: A review. Chinese Journal of Applied Ecology (应用生态学报), 2010, 21(8):2154-2160 (in Chinese)
    [52] Dong X-S (董兴水), Wang Z-H (王智慧), Huang X-R (黄学茹), et al. Recent discovery in nitrification: One-step nitrification and complete ammonia oxidizing microorganisms. Chinese Journal of Applied Ecology (应用生态学报), 2017, 28(1): 345-352 (in Chinese)
    [53] Gong J (龚俊), Zhang X-L (张晓黎). Contribution and mechanism of microbe-driving nitrogen cycling processes in coastal ecosystems. Microbiology China (微生物学通报), 2013, 40(1): 44-58 (in Chinese)
    [54] Lipschultz F, Wofsy SC, Ward BB, et al. Bacterial transformations of inorganic nitrogen in the oxygen-deficient waters of the Eastern Tropical South Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 1990, 37: 1513-1541
    [55] Ward BB, Glover HE, Lipschultz F. Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 1989, 36: 1031-1051
    [56] K?nneke M, Bernhard AE, de la Torre JR, et al. Isolation of an autotrophic ammonia-oxidizing marine archa-eon. Nature, 2005, 437: 543-546
    [57] Venter JC, Remington K, Heidelberg JF, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304: 66-74
    [58] Coolen MJL, Abbas B, van Bleijswijk J, et al. Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: A basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environmental Microbiology, 2007, 9: 1001-1016
    [59] Tsementzi D, Wu J, Deutsh S, et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature, 2016, 536: 179-183
    [60] Song G-D(宋国栋). Benthic Nitrogen Loss and Transformations in the East China Sea. PhD Thesis. Qingdao: Ocean University of China, 2013 (in Chinese)
    [61] Bonin P, Omnes P, Chalamet A. Simultaneous occurrence of denitrification and nitrate ammonification in sediments of the French Mediterranean Coast. Hydrobiologia, 1998, 389: 169-182
    [62] Hansen JI, Henriksen K, Blackburn TH. Seasonal distribution of nitrifying bacteria and rates of nitrification in coastal marine sediments. Microbial Ecology, 1981, 7: 297-304

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700