用户名: 密码: 验证码:
添加剂CH_3COONH_4对介质阻挡-电晕放电耦合法脱除NO、SO_2的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of additive CH_3COONH_4 on removal of NO and SO_2 by dielectric barrier-corona discharge coupling method
  • 作者:阚青 ; 杨岚 ; 刘露 ; 马晓迅
  • 英文作者:KAN Qing;YANG Lan;LIU Lu;MA Xiaoxun;School of Chemical Engineering, Northwest University, International Scientific and Technological Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advance Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi;
  • 关键词:脱硫脱硝 ; 介质阻挡-电晕放电 ; CH3COONH4 ; 气体组分 ; 脱除效率
  • 英文关键词:desulfurization and denitrification;;dielectric barrier-corona discharge;;CH3COONH4;;gas component;;removal efficiency
  • 中文刊名:化工进展
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:西北大学化工学院国家碳氢资源清洁利用国际科技合作基地陕北能源先进化工利用技术教育部工程研究中心陕西省洁净煤转化工程技术研究中心陕北能源化工产业发展协同创新中心;
  • 出版日期:2019-05-28 14:19
  • 出版单位:化工进展
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金(21536009);; 陕西省科技计划(2017ZDCXL-GY-10-03)
  • 语种:中文;
  • 页:430-440
  • 页数:11
  • CN:11-1954/TQ
  • ISSN:1000-6613
  • 分类号:X701
摘要
采用自行研究设计的介质阻挡-电晕放电等离子体反应装置在模拟烟气中进行NO、SO_2的脱除研究。考察了O_2、CO_2、水蒸气等气体组分对脱除NO、SO_2的影响,并进一步探讨了添加剂CH3COONH4对脱除NO、SO_2的影响及作用机理。实验结果表明:O2、CO_2和水蒸气浓度的增加对NO脱除有抑制作用,而引入CH3COONH4后,这些抑制作用会被减弱,使NO的脱除率得到大幅度提升,但这些抑制作用不会完全消除。在引入CH_3COONH_4后,气体组分和输入电流的变化对脱除SO_2的影响不明显,SO_2脱除率可达到94%左右。在N2/O2/CO2/H2O/NO/SO_2体系中加入0.27%的CH_3COONH_4后,NO初始浓度不变的条件下,SO_2含量较少时,对NO的脱除影响不明显,随着SO_2浓度的增加,NO的脱除率不断下降,增加CH_3COONH_4的添加量可消除SO_2的影响;另一方面,在SO_2初始浓度恒定的条件下,随着NO含量的增加,SO_2的脱除率保持在94%左右。在N2/O2/CO2/H2O/NO/SO_2体系中加入0.51%的CH3COONH4后,输入电流2.5A时,NO的脱除率达到72%。
        The removal of NO and SO_2 in simulated flue gas was studied by self-designed dielectric barrier-corona discharge plasma reactor. The effects of gas composition such as O2 concentration,CO_2 concentration and water vapor on the removal of NO and SO_2 were investigated. The effect of additive CH_3 COONH_4 on NO and SO_2 removal and its mechanism of action were also discussed. Experimental results showed that the increase of O_2 concentration, CO_2 concentration and H_2 O vapor concentration would inhibit the removal of NO. After the introduction of CH_3 COONH_4, these inhibitory effects would be weakened and the removal rate of NO would be greatly increased, but its inhibitory effects would not be completely eliminated. After the introduction of CH3 COONH4 into N2/O2/SO_2 system, the influence of gas composition and input current on SO_2 removal was not obvious, and the removal rate of SO_2 could reach about 94%. When 0.27%CH3 COONH4 was added into N2/O2/CO2/H2 O/NO/SO_2 system, under the initial concentration of NO was constant, When the content of SO_2 was low, the effect on NO removal was not obvious, the removal rate of NO decreased with the increase of SO_2 concentration, the effect of SO_2 could be eliminated by increasing the addition of CH3 COONH4. On the other hand, under the condition of constant initial concentration of SO_2, with the increase of NO content, the removal rate of SO_2 remained around 94%. When 0.51%CH_3 COONH_4 was added into N_2/O_2/CO_2/H_2 O/NO/SO_2 system, the removal rate of NO reached 72% when the input current was 2.5 A.
引文
[1]李戌敏.烟气脱硝技术在火电厂项目中的应用[J].技术与市场,2017, 24(2):73-74.LI Xumin. Application of flue gas denitrification technology in thermal power plant project[J]. Technology and Market, 2017, 24(2):73-74.
    [2]高岩,栾涛,徐宏明,等.焙烧温度对选择性催化还原催化剂表征及活性的影响[J].中国电机工程学报, 2013, 32(s1):143-148.GAO Yan, LUAN Tao, XU Hongming, et al. Effect of calcination temperature on the characterization and activity of selective catalytic reduction catalysts[J]. Proceedings of CSEE, 2013, 32(s1):143-148.
    [3]刘新,王树东.非热等离子体烟气脱硝中的二氧化硫、氨和温度的效应[J].化工学报, 2006, 57(10):2411-2415.LIU Xin, WANG Shudong. Effects of sulfur dioxide, ammonia and temperature in non-thermal plasma flue gas denitration[J]. Journal of Industry and Engineering(China),2006, 57(10):2411-2415.
    [4]丁凝,黄海涛,李歆,等.电晕等离子体烟气脱硫脱硝机理及影响因素探讨[J].安全与环境工程, 2008, 15(1):25-29.DING Ning, HUANG Haitao, LI Xin, et al. Discussion on mechanism and influencing factors of corona plasma flue gas desulfurization and denitration[J]. Safety and Environmental Engineering, 2008, 15(1):25-29.
    [5]杜旭.烟气成分对介质阻挡放电脱硫脱硝的影响[D].北京:华北电力大学, 2012.DU Xu. Effect of flue gas composition on desulfurization and denitration by dielectric barrier discharge[D]. Beijing:North China Electric Power University, 2012.
    [6] LI Hua, TANG Xiaolong, YI Honghong, et al. Study on oxidation and decomposition properties of no in plasma[J]. Thermal Power Generation, 2010, 39(5):9-17.
    [7]郭彬,栾涛.介质阻挡放电低温等离子体脱硝性能研究[J].核聚变与等离子体物理, 2017, 37(2):236-243.GUO Bin, LUAN Tao. Study on denitrification performance of low temperature plasma by dielectric barrier discharge[J]. Nuclear Fusion and Plasma Physics, 2017, 37(2):236-243.
    [8] DE BO I, HEYMAN J, VINCKE J. Dimethyl sulfide removal from synthetic waste gas using a flat poly(dimethyl siloxane)-coated composite membrane bioreactor[J]. Environmental Science&Technology, 2003, 37(18):4228.
    [9]王承智,胡莜敏,石荣,等.等离子体技术应用于气相污染物治理综述[J].环境污染与防治, 2006, 28(3):205.WANG Chengzhi, HU Youmin, SHI Rong, et al. Review of plasma technology applied in the treatment of gaseous pollutants[J].Environmental Pollution and Prevention, 2006, 28(3):205.
    [10]孙保明,尹水娥,肖海平,等.介质阻挡放电脱硫脱硝过程特性[J].化工学报, 2010, 61(2):469-476.SUN Baoming, YIN Shuie, XIAO Haiping, et al. Characteristics of desulfurization and denitrification process by dielectric barrier discharge[J]. CIESC Journal, 2010, 61(2):469-476.
    [11] KUNHARDT E. Generation of large volume atmospheric pressure nonequilibrium plasmas[J]. IEEE Trans. on Plasma Science, 2000, 28(1):189-200.
    [12] SUZUKI N, NISHIMURA K, TOKUNAGA O, et al. Radiation treatment of exhaust gases:NO decompositionin NO-N2and NO-rare gas mixtures[J]. Journal of Nuclear Science and Technology, 1978, 15(8):597-601.
    [13] YANG Lan, LIAN Ke, ZHANG Xiang, et al. Nitric oxide removal from flue gas using dielectric barrier discharge coupled with negative pulse corona[J]. Chemical Engineering Research&Design, 2019, 143:170-179.
    [14] TSAI C H, YANG H H, JOU C J, et al. Reducing nitric oxide into nitrogen via a radio-frequency discharge[J]. Journal of Hazardous Materials, 2007, 143(1/2):409.
    [15] FUTAMURA S, ZHANG A, YAMAMOTO T. Behavior of N2and nitrogen oxides innon-thermal plasma chemical processing of hazardous air pollutants[J]. IEEE Transactions on Industry Applications, 2000, 36(6):1507-1514.
    [16]孙明. OH, NH2自由基提高脉冲放电等离子体烟气脱硫效率的研究[D].大连:大连理工大学, 2004.SUN Ming. OH, NH2radicals improve the efficiency of flue gas desulfurization in pulsed discharge plasma[D]. Dalian:Dalian University of Technology, 2004.
    [17] ZHAO Guibin, HU Xudong, ARGYLE M D, et al. Effect of CO2on nonthermal-plasma reactions of nitrogen oxides in N2:ppm-level concentrations[J]. Industrial&Engineering Chemistry Research, 2005,44(14):3945-3946.
    [18] YIN Shuie, SUN Baomin, GAO Xudong, et al. Effect of relative humidity on removal of NO and SO2from flue gas in dielectric barrier discharge reactor[J]. Journal of Chinese Society of Power Engineering,2010, 30(1):41-46.
    [19] ZHU Y M. Optimization off pulsed corona discharged for flue gas treatment[J]. Advances Environmental Science, 1997, 5(5):75.
    [20]浦鹏,刘啸,彭亚东,等.助剂(C2H4、NH3)添加对AC/DC流光放电等离子体脱硝效果的影响[J].环境工程学报, 2017, 11(1):483-489.PU Peng, LIU Xiao, PENG Yadong, et al. Effect of additives(C2H4,NH3)addition on denitrification of AC/DC streamer discharge plasma[J]. Journal of Environmental Engineering, 2017, 11(1):483-489.
    [21] DINELL G. Pulse power electrostatic technologies for the control of flue gas emissions[J]. Journal of Electrostatics, 1990, 25(1):23-40.
    [22]罗渝然.化学键能数据手册[J].科学通报, 2005, 50(8):759.LUO Yuran. Chemical bond data sheet[J]. Chinese Science Bulletin,2005, 50(8):759.
    [23]李艳荣,张香,杨岚,等.钠添加剂对介质阻挡-电晕放电耦合法尿素脱除NO的影响[J].化工进展, 2018, 37(5):1978-1984.LI Yanrong, ZHANG Xiang, YANG Lan, et al. Effects of sodium additives on urea removal of NO by dielectric barrier-corona discharge coupling[J]. Chemical Industry and Engineering Progress, 2018, 37(5):1978-1984.
    [24]冉艳雄. Ni基催化剂上乙酸蒸汽重整反应机理研究[D].太原:太原理工大学, 2017.RAN Yanxiong. Study on reaction mechanism of acetic acid steam reforming over Ni-based catalyst[D]. Taiyuan:Taiyuan University of Technology, 2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700