用户名: 密码: 验证码:
不同基因型甜菜根际土壤有机氮分布特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution Characteristics of Soil Organic Nitrogen in Rhizosphere of Different Sugarbeet Genotypes
  • 作者:王秋红 ; 周建 ; 王孝纯 ; 宋柏权 ; 邓艳红
  • 英文作者:Wang Qiuhong;Zhou Jianchao;Wang Xiaochun;Song Baiquan;Deng Yanhong;Crop Academy of Heilongjiang University/Sugar Beet Research Institute of CAAS;The Key Laboratory of Sugar Beet Genetic Breeding, Colleges of Heilongjiang Province/Heilongjiang University;
  • 关键词:甜菜 ; 根际 ; 有机氮组分 ; 有机氮矿化 ; 空间分布
  • 英文关键词:sugar beet;;rhizosphere;;organic nitrogen component;;organic nitrogen mineralization;;spatial distribution
  • 中文刊名:中国农学通报
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:黑龙江大学农作物研究院/中国农业科学院甜菜研究所;黑龙江省普通高校甜菜遗传育种重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:中国农学通报
  • 年:2019
  • 期:05
  • 基金:“十三五”国家糖料现代农业产业技术体系项目“甜菜养分管理与土壤肥料岗位”(CARS-170204);; 黑龙江省科学基金项目“甜菜氮效率基因差异的生理机制研究”(C2018053)
  • 语种:中文;
  • 页:113-120
  • 页数:8
  • CN:11-1984/S
  • ISSN:1000-6850
  • 分类号:S153.6;S566.3
摘要
土壤中除无机氮外,有机态氮也是植物生长发育的重要营养来源。为探明不同基因型甜菜对根际土壤有机氮吸收利用以及有机氮组分在根际的空间分布情况,分别选取对土壤有机氮吸收效率高和低的品种各1个,采用Kuchenbuch-周氏微型盆及田间网袋法,研究了甜菜苗期及大田全生育期根际土壤有机氮各组分的变化规律,建立了土壤氮矿化及各组分在根际空间分布的数学模型。结果表明:2周苗龄的甜菜根际土壤有机氮各组分含量高低顺序为:酸解总氮(ATN)>氨基酸态氮(AAN)>氨态氮(AN)>氨基糖态氮(ASN)。其中AAN和AN在根际形成明显的耗竭面,即距离根表越远含量越高,在距根表15 mm时达到最高值,随后的变化渐趋平稳,其分布规律可用方程Y=Y0+Aln(X)拟合;ASN含量较低,随根际距离远近变化不显著;不同基因型甜菜对根际有机氮的耗竭能力各异,有机氮吸收效率高的品种均高于低的品种。田间自然条件下,甜菜根际土壤中的ATN、AAN及AN的含量在苗期增长最快,随后缓慢上升并逐渐趋于恒定。室内及田间试验结果表明,施氮处理后土壤有机氮的矿化量低于未施氮处理,其中有机氮吸收效率高的品种根际土壤有机氮的矿化量高于低的品种。
        Apart from inorganic nitrogen in soil, organic nitrogen is also an important nutrient source for plant growth and development. To ascertain the absorption and utilization of organic nitrogen in the rhizosphere and the spatial distribution of organic nitrogen components in the rhizosphere of different genotype sugarbeets, one of each of the varieties with high and low organic nitrogen efficiency were selected. Using the methods of Kuchenbuch-Zhou's miniature and field net bags, the variation regularities of organic nitrogen components in the rhizosphere of sugarbeet seedling period and the whole growth period in field were studied, and the mathematical model of soil nitrogen mineralization and the spatial distribution of each component in the rhizosphere were established. The results showed that the content of organic nitrogen in the rhizosphere soil of2 weeks old seedlings was as follows: acid hydrolysis total nitrogen(ATN) > amino acid nitrogen(AAN) >ammonia nitrogen(AN) > amino sugar nitrogen(ASN). Among them, AAN and AN formed obvious depletion surface in the rhizosphere, that is, the farther away from the root surface, the higher the content. The highest value was reached at 15 mm from the root surface, and the subsequent change became more stable. The distribution law could be obtained by the equation Y=Y0+Aln(X) fitting. The content of ASN was low, and it changed not significantly with the distance of the rhizosphere. Different sugarbeet varieties had different depletion abilities to rhizosphere organic nitrogen, and the depletion ability of varieties with high organic nitrogen absorption efficiency was higher than that of the low varieties. Under natural condition in field, the contents of ATN, AAN and AN in the rhizosphere soil grew the fastest at the seedling stage, then slowly increased and gradually became constant. The results of laboratory and field experiments showed that the mineralization of soil organic nitrogen was lower than that of non-nitrogen treatment after nitrogen application,and the mineralization of rhizosphere soil organic nitrogen of variety with higher organic nitrogen absorption efficiency was higher than that of low variety.
引文
[1] Zhang F, Shen J, Li L, et al. An overview of rhizosphere processesrelated with plant nutrition in major cropping systems in China[J].Plant and Soil,2004,260:89-99.
    [2] Cheng W, Zhang Q, Coleman D C, et al. Is available carbonlimiting microbial respiration in the rhizosphere[J].Soil Biology&Biochemistry,1996,28:1283-1288.
    [3]王敬国.植物根系和根际微生物对氮的竞争[J].土壤,1993(5):246-247.
    [4]周建朝,王秋红,王孝纯.土壤有机氮矿化特征和影响机理及对甜菜的启示[J].中国糖料,2014(1):65-67.
    [5] Reinhart K O, Cao X, Ma Q, et al.Elevational variation in soilamino acid and inorganic nitrogen concentrations in Taibaimountain, China[J].Plos One,2016,11(6):e0157979.
    [6] Roberts P, Bol R, Jones D L. Free amino sugar reactions in soil inrelation to soil carbon and nitrogen cycling[J].Soil Biology andBiochemistry,2007,39(12):3081-3092.
    [7] Michael P, Susan E, Ziegler. K A, et al. Soil organic nitrogencycling increases with temperature and precipitation along a borealforest latitudinal transect[J].Biogeochemistry,2016,27:397-410.
    [8] Abbasi M K, Khaliq A. Nitrogen mineralization of a loam soilsupplemented with organic-inorganic amendments under laboratoryincubation[J].Frontiers in plant science,2016(7):1038.
    [9] Jones D L, Kielland K, Sinclair F L, et al. Soil organic nitrogenmineralization across a global latitudinal gradient[J].GlobalBiogeochemical Cycles,2009,23(1):G81016,doi:10.102912008GB003250.
    [10]丛耀辉,张玉玲,张玉龙,等.黑土区水稻土有机氮组分及其对可矿化氮的贡献[J].土壤学报,2016(2):457-467.
    [11] Abbasi M K, Khaliq A. Nitrogen Mineralization of a Loam SoilSupplemented with Organic-Inorganic Amendments underLaboratory Incubation[J].Frontiers in Plant Science,2016,7:1038.
    [12]王秋红,郭亚宁,胡晓航,等.不同有机氮效率的甜菜基因型筛选及差异分析[J].植物研究,2017(4):37.
    [13]周建朝,周通,潘博.一种小型试验盆装土装置,实用新型专利,公告号:CN202841992U,公告日:2013-04-03.
    [14]彭春雪,耿贵,於丽华,等.不同浓度钠对甜菜生长及生理特性的影响[J].植物营养与肥料学报,2014(2):59-465.
    [15]张俊清,朱平,张夫道.有机肥和化肥配施对黑土有机氮形态组成及分布的影响[J].植物营养与肥料学报,2004,10(3):245-249.
    [16]李菊梅,李生秀.可矿化氮与各有机氮组分的关系[J].植物营养与肥料学报,2003,9(2):158-164.
    [17]肖伟伟,范晓晖,杨林章,等.长期定位施肥对潮土有机氮组分和有机碳的影响[J].土壤学报,2009,46(2):274-280.
    [18]胡晓航,陈立新,周建朝,等.黑土有机氮组分在甜菜生长季矿化特征的研究[J].水土保持学报,2014,28(2):189-194.
    [19] Philben M, Billings S A, Edwards K A, et al. Amino acidδ15Nindicates lack of N isotope fractionation during soil organicnitrogen decomposition[J].Biogeochemistry,2018(3):1-15.
    [20] Herman D J, Johnson K K, Jaeger C H, et al. Root influence onnitrogen mineralization and nitrification in Avena barbatarhizosphere soil[J].Soil Science Society of America Journal,2006,70(5):1504-1511.
    [21]吴林坤,林向民,林文雄.根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J].植物生态学报,2014,38(3):298-310.
    [22] Paterson E, Gebbing T, Abel C, et al. Rhizodeposition shapesrhizosphere microbial community structure in organic soil[J].NewPhytologist,2007,173:600-610.
    [23] Eisenhauer N, Scheu S, Jousset A. Bacterial diversity stabilizescommunity productivity[J].PLoS ONE,2012,7:e34517.
    [24] Gschwendtner S, Esperschütz J, Buegger F, et al. Effects ofgenetically modified starch metabolism in potato plants onphotosynthate fluxes into the rhizosphere and on microbialdegraders of root exudates[J].FEMS Microbiology Ecology,2011,76:564-575.
    [25] Chaparro J M, Badri D V, Bakker M G, et al. Root exudation ofphytochemicals in Arabidopsis follows specific patterns that aredevelopmentally programmed and correlate with soil microbialfunctions[J].PLoS ONE,2013,8:e55731.
    [26] Breglinai M M, Ros G H, Temminghoff E J M, et al. Nitrogenmineralization in soils related to initial extractable organic nitrogen:effect of temperature and time[J].Communications in soil scienceand plant analysis,2010,41(11):1383-1398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700