用户名: 密码: 验证码:
代谢组学解析西藏青稞白粉病分子机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metabolomics Analysis of Molecular Mechanism of Powdery Mildew in Tibetan Hulless Barley
  • 作者:魏玲玲 ; 旺姆 ; 曾兴权
  • 英文作者:WEI Lingling;WANG mu;ZENG Xingquan;Food Science College, Tibet Agriculture & Animal Husbandry University;Plant Sciences College, Tibet Agriculture & Animal Husbandry University;Tibet Academy of Agriculture & Animal Husbandry Sciences;
  • 关键词:西藏青稞 ; 白粉病 ; 广泛靶向代谢组学 ; 差异代谢物
  • 英文关键词:Tibetan hulless barley;;powdery mildew;;widely targeted metabolomics;;differential metabolites
  • 中文刊名:高原农业
  • 英文刊名:Journal of Plateau Agriculture
  • 机构:西藏农牧学院食品科学学院;西藏农牧学院植物科学学院;西藏自治区农牧科学院农业研究所;
  • 出版日期:2019-10-15
  • 出版单位:高原农业
  • 年:2019
  • 期:05
  • 基金:西藏农牧学院研究生创新计划资助项目YJS2019-15
  • 语种:中文;
  • 页:24-30
  • 页数:7
  • CN:54-1066/S
  • ISSN:2096-4781
  • 分类号:S435.123
摘要
白粉病是一种真菌病,对农作物造成普遍的威胁。目前国内外关于青稞抗白粉病的报道较多,但缺乏有关西藏青稞白粉病代谢组学的研究。采用广泛靶向代谢组学分析方法,研究了西藏青稞在白粉病感染后,在代谢产物水平的动态生理变化。结果表明:西藏青稞与白粉菌Blumeriagraminis(DC.)f.sp.hordei(Bgh)相互作用的过程中,全抗品种G7与感病品种Z13有不同的表型变化;广泛靶向代谢组共检测到300种已知和未知代谢产物,256个已知代谢物,全抗品种G7与感病品种Z13之间存在着52个代谢物的差异表达,分为15类。进一步分析表明,在青稞与Bgh相互作用的过程中,氨基酸、酚胺类物质的含量存在差异积累。本研究为青稞对白粉病应答过程中发生的动态生理变化提供新认识,将为西藏青稞抗性品种的开发提供新线索。
        Powdery mildew is a fungal disease that poses a widespread threat to crops. At present, there are many domestic and foreign reports relating to the resistance of Tibetan hulless barley to powdery mildew, but there is a lack of research on the metabolomics of Tibetan hulless barley powdery mildew. The dynamic physiological changes of Tibetan hulless barley at the level of metabolites after powdery mildew infection were studied by extensive targeted metabolomics analysis. The results showed that: during the interaction between Tibetan hulless barley and blumeria graminis(DC.) f.s. hordei(Bgh), there were different phenotypic changes between the resistant variety G7 and the susceptible variety Z13. A total of 300 known and unknown metabolites and 256 known metabolites were detected in the widely targeted metabolome, and 52 metabolites were differentially expressed between the resistant variety G7 and the susceptible variety Z13. It could be grouped into 15 categories. Further analysis showed that during the interaction between Tibetan hulless barley and Bgh,there were differences in the content of amino acids and phenolic amines. This study provided new understanding of the dynamic physiological changes occurring in the response process of hulless barley to powdery mildew. It will provide a new clue for the development of Tibetan hulless barley resistant varieties.
引文
[1]Dodds P N,Rathjen J P,Plant immunity:towards an integrated view of plant-pathogen interactions[J].NA-TURE REVIEWS GENETICS,2010,11(8):539-548.
    [2]Zhang J,Zheng H,Li Y,et al.Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat[J].Scientific Reports,2016,6(1):238-245.
    [3]Naumann M,Somerville S C,Voigt C A.Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines[J].Plant Signaling&Behavior,2013,8(6):1559-2324.
    [4]Huang X Q,R?der M S.Molecular mapping of powdery mildew resistance genes in wheat:A review[J].Euphytica,2004,137(2):203-223.
    [5]Cheng Y L,Yao J,Zhang H C.Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens[J].Protoplasma,2015,252(4):1167-1179.
    [6]Seifi A,Gao D,Zheng Z,et al.Genetics and molecular mechanisms of resistance to powdery mildews in tomato(Solanum lycopersicum)and its wild relatives[J].European Journal of Plant Pathology,2014,138(3):641-665.
    [7]Douchkov D,Lück,Stefanie,Johrde A,et al.Discovery of genes affecting resistance of barley to adapted and non-adapted powdery mildew fungi[J].Genome Biology,2014,15(12):518-520.
    [8]Chisholm S T,Coaker G,Day B,et al.Host-Microbe Interactions:Shaping the Evolution of the Plant Immune Response[J].Cell,2006,124(4):810-814.
    [9]Zipfel C.Early molecular events in PAMP-triggered immunity[J].Current Op inion in Plant Biology,2009,12(4):414-420.
    [10]Bevan M,Bancroft I,Bent E,et al.Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J].Nature,1998,391(6666):485-488.
    [11]Zeng X,Long H,Wang Z,et al.The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau.Proceedings of the National Academy of Sciences of the United States of America,2015,112(4):1095-1100.
    [12]Chehab E W,Braam J.Jasmonates in Plant Defense Responses[J].Journal of the Chilean Chemical Society,2012,56(3):768-770.
    [13]Pociecha E,Janeczko Z,Janeczko A.Resveratrol stimulates phenolic metabolism and PSII efficiency in wheat infected with powdery mildew[J].Journal of Plant Interactions,2014,9(1):494-503.
    [14]Cowley T.Polyamine metabolism in barley reacting hypersensitively to the powdery mildew fungus[J].Blumeria graminis f.sp.Hordei Plant Cell&Environment,2010,25(3):461-468.
    [15]Amjad K W,Xilin H,Ke H,et al.Lipidomic study reveals the effect of morphological variation and other metabolite interactions on the lipid composition in various cultivars of Bok choy[J].Biochemical and Biophysical Research Communications,2018,4(112):755-764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700