用户名: 密码: 验证码:
能源植物柳枝稷基因工程研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in switchgrass biotechnology
  • 作者:曹慧颖 ; 张立军 ; 阮燕晔 ; 张敖 ; 董小妹 ; 张馨悦
  • 英文作者:CAO Huiying;ZHANG Lijun;RUAN Yanye;ZHANG Ao;DONG Xiaomei;ZHANG Xinyue;College of Biological Science and Biotechnology, Shenyang Agricultural University/Liaoning Plant Gene Engineering Research Center;
  • 关键词:遗传转化 ; 基因型 ; 真空 ; 农杆菌 ; miRNA
  • 英文关键词:genetic engineering;;genotype;;vacuum;;Agrobacterium;;miRNA
  • 中文刊名:草业科学
  • 英文刊名:Pratacultural Science
  • 机构:沈阳农业大学生物科学技术学院/辽宁省植物基因工程技术研究中心;
  • 出版日期:2019-02-15
  • 出版单位:草业科学
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金(31300164);; 辽宁省沈阳市科技计划(18-013-0-92)
  • 语种:中文;
  • 页:127-134
  • 页数:8
  • CN:62-1069/S
  • ISSN:1001-0629
  • 分类号:S578
摘要
柳枝稷(Panicum virgatum)是C4暖季草本植物。具有许多优良的农艺性状,如广泛的地理适应性,耐贫瘠,生产成本低,水利用率高,生物质产量高,易于收获,因此被认为是重要的生物能源作物。通过生物技术对柳枝稷进行遗传改良,对于充分开发柳枝稷的生物质潜能,利用柳枝稷生产生物燃料具有重要意义。本文从柳枝稷遗传转化技术及改良性状的角度综述了柳枝稷的基因工程进展,为培育优良柳枝稷新品种提供参考。
        Switchgrass(Panicum virgatum) is a C4 perennial warm season grass. Several of the natural and agronomic traits of switchgrass, including its wide geographical distribution, low nutrient requirements, low production costs, high water use efficiency, high biomass potential, and ease of harvesting, make it an attractive biomass crop for biofuel production. We believe that improving genetics using biotechnology would be a useful way to take advantage of the potential of switchgrass.Here, we highlight advances that have been made in switchgrass biotechnology. These advances will help to improve switchgrass agronomic traits and breeding varieties.
引文
[1]张蕴岭.中国对外关系40年:回顾与展望.世界经济与政治,2018(1):25-26.ZHANG Y L.Forty years of China vs foreign relations:Retrospection and expectation.World Economics and Politics,2018(1):25-26.
    [2]尹佳音,唐葆君.中国石油进口安全影响因素分析.中国能源,2016,38(11):29-33.YIN J Y,TANG B J.Focus on China oil security from oil imports.Energy of China,2016,38(11):29-33.
    [3]DAVID K,RAGAUSKAS A J.Switchgrass as an energy crop for biofuel production:a review of its ligno-cellulosic chemical properties.Energy&Environmental Science,2010,3(9):1182-1190.
    [4]ZHUANG Q L,QIN Z C,CHEN M.Biofuel,land and water:Maize,switchgrass or Miscanthus.Environmental Research Letters,2013,8(1):015020-015025.
    [5]LYND L R,CUSHMAN J H,NICHOLS R J,WYMAN C E.Fuel ethanol from cellulosic biomass.Science,1991,251:1318-1323.
    [6]FU C,SUNKAR R,ZHOU C,SHEN H,ZHANG J Y,MATTS J,WOLF J,MANN D G J,JR C N S,TANG Y,WANG Z Y.Overexpression of miR156 in Switchgrass(Panicum virgatum L.)results in various morphological alterations and leads to improved biomass production.Plant Biotechnology,2012,10(4):443-452.
    [7]BOUTON J H.Molecular breeding of Switchgrass for use as a biofuel crop.Current Opinion in Genetics&Development,2007,17(6):553-558.
    [8]WRIGHT L,TURHOLLOW A.Switchgrass selection as a“model”bioenergy crop:a history of the process.Biomass and Bioenergy,2010,34(6):851-868.
    [9]高丽欣,刘静,邓波,杨富裕,张蕴薇.施氮水平和收获时间对柳枝稷生物质产量和能源品质的影响.草业科学,2016,33(1):110-115.GAO L X,LIU J,DENG B,YANG F Y,ZHANG Y W.Effects of nitrogen level and harvest time on biomass yield and energy characteristics of switchgrass.Pratacultural Science,2016,33(1):110-115.
    [10]陶梦,苏德荣,吕世海,王铁梅,陈俊翰.氮肥对库布齐沙地柳枝稷产量、氮肥利用率及土壤硝态氮残留的影响.草业科学,2018,35(2):415-422.TAO M,SU D R,LYU S H,WANG T M,CHEN J H.Effect of nitrogen fertilizer on switchgrass yield,N-use efficiency and residual nitrate nitrogen in Kubuqi Sandland soil.Pratacultural Science,2018,35(2):415-422.
    [11]MCLAUGHLIN S,BOUTON J,BRANSBY D,CONGER B,OCUMPAUGH W,PARRISH D,TALIAFERRO C,VOGEL K,WULLSCHLEGER S.Developing switchgrass as a bioenergy crop.Perspectives on New Crops and New Uses,1999,56:282-299.
    [12]MISSAOUI A M,PATERSON A H,BOUTON J H.Molecular markers for the classification of switchgrass(Panicum virgatum L.)germplasm and to assess genetic diversity in three synthetic switchgrass populations.Genetic Resources and Crop Evolution,2006,53(6):1291-1302.
    [13]HELLENS R,MULLINEAUX P,KLEE H.Technical focus:A guide to Agrobacterium binary Ti vectors.Trends in Plant Science,2000,5(10):446-451.
    [14]HIEI Y,OHTA S,KOMARI T,KUMASHIRO T.Efficient transformation of rice(Oryza sativa L.)mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.The Plant Journal,1994,6(2):271-282.
    [15]ISHIDA Y,SAITO H,OHTA S,HIEI Y,KOMARI T,KUMASHIRO T.High efficiency transformation of maize(Zea mays L.)mediated by Agrobacterium tumefaciens.Nature Biotechnology,1996,14(6):745-750.
    [16]DAI S,ZHENG P,MARMEY P,ZHANG S,TIAN W,CHEN S,BEACHY R N,FAUQUET C.Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment.Molecular Breeding,2001,7(1):25-33.
    [17]FRAME B R,SHOU H,CHIKWAMBA R K,ZHANG Z,XIANG C,FONGER T M,PEGG S E K,LI B,NETTLETON D S,PEID.Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system.Breakthrough Technologies,2002,129(1):13-22.
    [18]TRICK H,FINER J.Sonication-assisted Agrobacterium-mediated transformation of soybean[Glycine max(L.)Merrill]embryogenicsuspension culture tissue.Plant Cell Reports,1998,17(6/7):482-488.
    [19]OLIVEIRA M L P D,FEBRES V J,COSTA M G C,OTONI W C.High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration.Plant Cell Reports,2009,28(3):387-395.
    [20]HIEI Y,ISHIDA Y,KASAOKA K,KOMARI T.Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens.Plant Cell,Tissue&Organ Culture,2006,87(3):233-243.
    [21]CHENG M,FRY J E,PANG S,ZHOU H,HIRONAKA C M,DUNCAN D R,CONNER T W,WAN Y.Genetic transformation of wheat mediated by Agrobacterium tumefaciens.Plant Physiology,1997,115(3):971-980.
    [22]SOMLEVA M,TOMASZEWSKI Z,CONGER B.Agrobacterium-mediated genetic transformation of switchgrass.Crop Science,2002,42:2080-2087.
    [23]OLHOFT P,LIN K,GALBRAITH J,NIELSEN N,SOMERS D.The role of thiol compounds in increasing Agrobacteriummediated transformation of soybean cotyledonary-node cells.Plant Cell Reports,2001,20(8):731-737.
    [24]OLHOFT P,SOMERS D.L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells.Plant Cell Reports,2001,20(8):706-711.
    [25]LI R,QU R.High throughput Agrobacterium-mediated switchgrass transformation.Biomass Bioenergy,2011,35:1046-1054.
    [26]刘燕蓉,岑慧芳,严建萍,张万军.农杆菌介导的柳枝稷遗传转化体系的优化.中国农业科学,2016,49(1):80-89.LIU Y R,CEN H F,YAN J P,ZHANG W J.Optimizing of Agrobacterium-mediated transformation of switchgrass cultivars.Scientia Agricultura Sinica,2016,49(1):80-89.
    [27]OGAWA Y,HONDA M,KONDO Y,HARA-NISHIMURA I.An efficient Agrobacterium-mediated transformation method for switchgrass genotypes using type I callus.Plant Biotechnology,2016,33:19-26.
    [28]LIU Y R,CEN H F,YAN J P,ZHANG Y W,ZHANG W J.Inside out:High-efficiency plant regeneration and Agrobacteriummediated transformation of upland and lowland switchgrass cultivars.Plant Cell Reports,2015,34(7):1099-1108.
    [29]SAATHOFF A J,SARATH G,CHOW E K,DIEN B S,TOBIAS C M.Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment.PLoS One,2011,6(1):e16416.
    [30]XI Y,FU C,GE Y,NANDAKUMAR R,HISANO H,BOUTON J,WANG Z Y.Agrobacterium-mediated transformation of switchgrass and inheritance of the transgenes.BioEnergy Research,2009,2(4):275-283.
    [31]POOVAIAH C R,MAZAREI M,DECKER S R,TURNER G B,SYKES R W,DAVIS M F,STEWART C N.Transgenic switchgrass(Panicum virgatum L.)biomass is increased by overexpression of switchgrass sucrose synthase(PvSUS1).Biotechnology Journal,2015,10(4):552-563.
    [32]RAMAMOORTHY R,KUMAR P P.A simplified protocol for genetic transformation of switchgrass(Panicum virgatum L.).Plant Cell Reports,2012,31(10):1923-1931.
    [33]VOGEL K P,MITCHELL R B.Heterosis in Switchgrass:biomass yield in swards.Crop Science,2008,48(6):2159-2164.
    [34]张爱玲,付晨,陈志宏,杨晓鹏,邱盛洁,董青林,严海东,蒋洁,张新全,缪致铭,解关琦,黄琳凯.8份柳枝稷种质资源苗期抗旱性综合评价.草业科学,2017,34(4):706-713.ZHANG A L,FU C,CHEN Z H,YANG X P,QIU S J,DONG Q L,YAN H D,JIANG J,ZHANG X Q,MIAO Z M,XIE G Q,HUANG L K.Evaluation of drought resistance in seedlings of eight switchgrass accessions.Pratacultural Science,2017,34(4):706-713.
    [35]PONTAU P,HOU Y,CAI H,ZHEN Y,JIA X,CHIU A S F,XU M.Assessing land-use impacts by clean vehicle systems.Resources,Conservation and Recycling,2015,95:112-119.
    [36]ASHWORTH A J,ALLEN F L,BACON J L,SAMS C E,HART W E,GRANT J F,MOORE P A,POTE D H.Switchgrass cultivar,yield,and nutrient removal responses to harvest timing.Agronomy Journal,2017,109(6):2598-2605.
    [37]MARTINEZ-REYNA J M,VOGEL K P.Incompatibility systems in switchgrass.Crop Science,2002,42(6):1800-1805.
    [38]COSTICH D E,FRIEBE B,SHEEHAN M J,CASLER M D,BUCKLER E S.Genome-size variation in switchgrass(Panicum virgatum):Flow cytometry and cytology reveal rampant aneuploidy.The Plant Genome,2010,3(3):130-141.
    [39]NAGESWARA-RAO M,SONEJI J R,KWIT C,STEWART C N.Advances in biotechnology and genomics of switchgrass.Biotechnology for Biofuels,2013,6(1):77.
    [40]刘燕蓉,张万军.不同生态型的11个柳枝稷品种组织培养反应评价.草地学报,2014,22(3):579-585.LIU Y R,ZHANG W J.Evaluation of the tissue culture responses of 11 switchgrass varieties from different ecotypes.Acta Agrestia Sinica,2014,22(3):579-585.
    [41]CARROLL A,SOMERVILLE C.Cellulosic biofuels.Annual Review of Plant Biology,2009,60:165-182.
    [42]KESHWANI D R,CHENG J J.Switchgrass for bioethanol and other value-added applications:A review.Bioresource Technology,2009,100(4):1515-1523.
    [43]FURTADO A,LUPOI J S,HOANG N V,HEALEY A,SINGH S,SIMMONS B A,HENRY R J.Modifying plants for biofuel and biomaterial production.Plant Biotechnology Journal,2014,12(9):1246-1258.
    [44]FU C,XIAO X,XI Y,GE Y,CHEN F,BOUTON J,DIXON R A,WANG Z Y.Downregulation of cinnamyl alcohol dehydrogenase(CAD)leads to improved saccharification efficiency in switchgrass.BioEnergy Research,2011,4(3):153-164.
    [45]FU C,MIELENZ J R,XIAO X,GE Y,HAMILTON C Y,MIGUEL R J,CHEN F,FOSTON M,RAGAUSKAS A,BOUTON J,DIXON R A,WANG Z Y.Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass.Proceedings of the National Academy of Sciences USA,2011,108(9):3803-3808.
    [46]TSCHAPLINSKI T J,STANDAERT R F,ENGLE N L,MARTIN M Z,SANGHA A K,PARKS J M,SMITH J C,SAMUEL R,JIANG N,PU Y,RAGAUSKAS A J,HAMILTON C Y,FU C,WANG Z Y,DAVISON B H,DIXON R A,MIELENZ J R.Downregulation of the caffeic acid o-methyltransferase gene in switchgrass reveals a novel monolignol analog.Biotechnology for Biofuels,2012,5:71-85.
    [47]SHEN H,HE X,POOVAIAH C R,WUDDINEH W A,MA J,MANN D G J,WANG H,JACKSON L,TANG Y,JR C N S,CHEN F,DIXON R A.Functional characterization of the switchgrass(Panicum virgatum)R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks.New Phytologist,2012,193(1):121-136.
    [48]SHEN H,POOVAIAH C R,ZIEBELL A,TSCHAPLINSKI T J,PATTATHIL S,GJERSING E,ENGLE N L,KATAHIRA R,PUY,SYKES R.Enhanced characteristics of genetically modified Switchgrass(Panicum virgatum L.)for high biofuel production.Biotechnology for Biofuels,2013,6(1):71-86.
    [49]JOVER-GIL S,CANDELA H,PONCE M R.Plant microRNAs and development.International Journal of Developmental Biology,2005,49:733-744.
    [50]FU C,SUNKAR R,ZHOU C,SHEN H,ZHANG J Y,MATTS J,WOLF J,MANN D G J,JR C N S,TANG Y,WANG Z Y.Overexpression of miR156 in switchgrass(Panicum virgatum L.)results in various morphological alterations and leads to improved biomass production.Plant Biotechnology Journal,2012,10:443-452.
    [51]ZHANG B.MicroRNA:A new target for improving plant tolerance to abiotic stress.Journal of Experimental Botany,2015,66(7):1749-1761.
    [52]MATTS J,JAGADEESWARAN G,ROE B A,SUNKAR R.Identification of microRNAs and their targets in switchgrass,a model biofuel plant species.Journal of Plant Physiology,2010,167(11):896-904.
    [53]XIE F,STEWART C N,TAKI F A,HE Q,LIU H,ZHANG B.High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.Plant Biotechnology Journal,2014,12(3):354-366.
    [54]XIE Q,LIU X,ZHANG Y,TANG J,YIN D,FAN B,ZHU L,HAN L,SONG G,LI D.Identification and characterization of microRNA319a and its putative target gene,PvPCF5,in the bioenergy grass switchgrass(Panicum virgatum).Frontiers in Plant Science,2017,8:396.
    [55]ALLWRIGHT M R,TAYLOR G.Molecular breeding for improved second generation bioenergy crops.Trends in Plant Science,2016,21(1):43-54.
    [56]MANN D G J,KING Z R,LIU W,JOYCE B L,PERCIFIELD R J,HAWKINS J S,LAFAYETTE P R,ARTELT B J,BURRIS JN,MAZAREI M.Switchgrass(Panicum virgatum L.)polyubiquitin gene(PvUbi1 and PvUbi2)promoters for use in plant transformation.BMC Biotechnology,2011,11(1):74.
    [57]OKADA M,LANZATELLA C,SAHA M C,BOUTON J,WU R,TOBIAS C M.Complete switchgrass genetic maps reveal subgenome collinearity,preferential pairing and multilocus interactions.Genetics,2010,185(3):745-760.
    [58]CASLER M D,TOBIAS C M,KAEPPLER S M,BUELL C R,WANG Z Y,CAO P,SCHMUTZ J,RONALD P.The switchgrass genome:Tools and strategies.The Plant Genome,2011,4(3):273-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700