用户名: 密码: 验证码:
三峡库区消落带土壤溶解性有机质溯源:基于氮/碳比值的线性双端元源负荷分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Use of the Nitrogen/Carbon Ratio(N/C) and Two End-Member Sources Mixing Model to Identify the Origins of Dissolved Organic Matter from Soils in the Water-Level Fluctuation Zones of the Three Gorges Reservoir
  • 作者:江韬 ; Joeri ; Kaal ; 梁俭 ; 刘江 ; 张耀玲 ; 王定勇 ; 魏世强 ; 赵铮
  • 英文作者:JIANG Tao;Joeri Kaal;LIANG Jian;LIU Jiang;ZHANG Yao-ling;WANG Ding-yong;WEI Shi-qiang;ZHAO Zheng;Department of Environmental Science and Engineering,College of Resources and Environment,Southwest University;Department of Forest Ecology and Management,Swedish University of Agricultural Sciences;Ciencia do Sistema Terra,Departamento de Edafoloxía e Química Agrícola,Universidade de Santiago de Compostela,Campus Sur s/n;Pyrolyscience;College of Chemistry and Environmental Engineering,Baise University;Qinghai Institute of Salt Lakes,Chinese Academy of Sciences;Guizhou Provincial Environmental Monitoring Center;
  • 关键词:三峡库区 ; 消落带 ; 溶解性有机质(DOM) ; 土壤 ; 天然有机质 ; 元素组成 ; 源负荷模型 ; 结构-反应活性
  • 英文关键词:Three Gorges Reservoir areas;;water-level fluctuation zones;;dissolved organic matter(DOM);;soil;;natural organic matter;;elemental composition;;source-loading model;;structure-reactivity relationships
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:西南大学资源环境学院环境科学与工程系;Department of Forest Ecology and Management,Swedish University of Agricultural Sciences;Ciencia do Sistema Terra,Departamento de Edafoloxía e Química Agrícola,Universidade de Santiago de Compostela,Campus Sur s/n;Pyrolyscience;百色学院化学与环境工程学院;中国科学院青海盐湖研究所;贵州省环境监测中心站;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金项目(41403079,41373113);; 重庆市科委基础与前沿研究计划项目(cstc2015jcyjA20021);; 中央高校基本科研业务费专项基金重点项目(XDJK2015B035);; 重庆市博士后科研项目(Xm2014023)
  • 语种:中文;
  • 页:157-166
  • 页数:10
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X53
摘要
土壤溶解性有机质(soil DOM)作为陆地系统天然有机质的重要组成部分,以其活跃的生物地球化学性质,在污染物的环境行为中扮演着极其重要的作用.而了解其来源和结构组成是进一步明确其"结构-反应活性"的关键和前提.本文以三峡库区消落带土壤DOM为研究对象,基于传统氮/碳比值(N/C)及衍生的双端元源负荷模型,讨论该溯源方法在分子水平上的合理性;同时采用光漂白试验,进一步讨论各样本反应活性与其源负荷的相关性.结果表明,N/C值和双端元线性混合模型值均表明土壤DOM具有"陆源"和"内源"的双重特性——这与其他高级分析技术溯源结果基本一致.这种传统溯源分析结果在分子水平上具有合理性,但仅仅反映DOM结构和来源在特定面相上的信息,只能证明库区土壤DOM属于"混合型来源",却无法提供分辨率更高的特定组分来源信息.另外,N/C元素比值及源负荷分别和光漂白动力学过程极显著相关,因此可作为较方便的指标,快速简单判断DOM的光化学反应活性.但在关注DOM本身生物地球化学的研究工作中,仍建议使用多重方法的比较分析,以便于提高单一解析方法的分辨率.
        Soil dissolved organic matter(soil DOM) plays a crucial role in the environmental fate of pollutants because of its exceptional biogeochemical reactivity. Therefore,tracing the sources and understanding the properties of DOM through chemical characterization is important for clarifying the"structure-reactivity"of DOM in the environment. In this study,traditional elementary analysis methods including nitrogen/carbon ratio(N/C) determinations and derived two end-member source-loads mixing models were applied to soil DOM extracted from the water-level fluctuation zones of the Three Gorges Reservoir(TGR) area. The results were further compared to other characterization techniques that operate on the molecular scale(e. g.,FTIR and analytical pyrolysis techniques). The ultimate objective was to assess the performance of N/C ratio and two end-member modeling for identifying the DOM sources. Additionally,a photo-bleaching kinetic experiment was conducted to test the correlation between DOM reactivity and its source-loadings. Results showed,based on the N/C ratio and mixing modeling,all soil DOM samples in the TGR area share "dualsource"characteristics,namely,allochthonousness(e. g.,terrestrial) and autochthonousness(e. g.,internal) attributes,which is in agreement with other advanced characterization tools. The traditional method results were comprehensible in light of the data from molecular techniques,but the information revealed only reflects certain aspects of DOM compositional characteristics. It can be concluded that the N/C ratio and mixing modeling can validate general sources of soil DOM,but not information about specific components. Meanwhile, the significant correlation between the photo-bleaching kinetic constant and N/C and source-loadings indicated that these two parameters can be used as rapid indicators to estimate soil DOM reactivity in photochemical processes.However,it should be emphasized that it remains essential to employ multiple characterization methods to investigate the biogeochemistry of soil DOM,so as to increase the characterization resolution with regard to the heterogeneity of DOM.
引文
[1] Kalbitz K,Solinger S,Park J H,et al. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Science,2000,165(4):277-304.
    [2] Jansen B,Kalbitz K,Mc Dowell W H. Dissolved organic matter:linking soils and aquatic systems[J]. Vadose Zone Journal,2014,13(7),doi:10. 2136/vzj2014. 05. 0051.
    [3] Aiken G R,Hsu-Kim H,Ryan J N. Influence of dissolved organic matter on the environmental fate of metals,nanoparticles,and colloids[J]. Environmental Science&Technology,2011,45(8):3196-3201.
    [4] Tranvik L J,Downing J A,Cotner J B,et al. Lakes and reservoirs as regulators of carbon cycling and climate[J].Limnology and Oceanography,2009,54(6):2298-2314.
    [5] Bolan B S,Adriano D C,Kunhikrishnan A,et al. Dissolved organic matter:biogeochemistry,dynamics,and environmental significance in soils[J]. Advances in Agronomy,2011,110:1-75.
    [6]何伟,白泽琳,李一龙,等.溶解性有机质特性分析与来源解析的研究进展[J].环境科学学报,2016,36(2):359-372.He W,Bai Z L,Li Y L,et al. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae,2016,36(2):359-372.
    [7] Ye C,Li S Y,Zhang Y L,et al. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir,China[J]. Journal of Hazardous Materials,2011,191(1-3):366-372.
    [8] Bing H J,Zhou J,Wu Y H,et al. Current state,sources,and potential risk of heavy metals in sediments of Three Gorges Reservoir,China[J]. Environmental Pollution,2016,214:485-496.
    [9] Liu J,Jiang T,Huang R,et al. A simulation study of inorganic sulfur cycling in the water level fluctuation zone of the Three Gorges Reservoir, China and the implications for mercury methylation[J]. Chemosphere,2017,166:31-40.
    [10] Rice J A,Mac Carthy P. Statistical evaluation of the elemental composition of humic substances[J]. Organic Geochemistry,1991,17(5):635-648.
    [11] Sun L,Perdue E M,Meyer J L,et al. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river[J]. Limnology and Oceanography,1997,42(4):714-721.
    [12] Tan F C,Strain P M. Organic carbon isotope ratios in recent sediments in the St Lawrence Estuary and the Gulf of St Lawrence[J]. Estuarine and Coastal Marine Science,1979,8(3):213-225.
    [13] Perdue E M,Koprivnjak J F. Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments[J].Estuarine,Coastal and Shelf Science,2007,73(1-2):65-72.
    [14] Leenheer J A,CrouéJ P. Peer reviewed:characterizing aquatic dissolved organic matter:understanding the unknown structures is key to better treatment of drinking water[J]. Environmental Science&Technology,2003,37(1):18A-26A.
    [15] Mopper K, Stubbins A, Ritchie J D, et al. Advanced instrumental approaches for characterization of marine dissolved organic matter:extraction techniques,mass spectrometry,and nuclear magnetic resonance spectroscopy[J]. Chemical Reviews,2007,107(2):419-442.
    [16] Li W T,Chen S Y,Xu Z X,et al. Characterization of dissolved organic matter in municipal wastewater using fluorescence PARAFAC analysis and chromatography multi-excitation/emission scan:a comparative study[J]. Environmental Science&Technology,2014,48(5):2603-2609.
    [17] Jiang T,Kaal J,Liang J,et al. Composition of dissolved organic matter(DOM)from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis,infrared spectroscopy,pyrolysis-GC-MS and thermally assisted hydrolysis and methylation[J]. Science of the Total Environment,2017,603-604:461-471.
    [18] Stubbins A,Lapierre J F,Berggren M,et al. What's in an EEM? Molecular signatures associated with dissolved organic fluorescence in boreal Canada[J]. Environmental Science&Technology,2014,48(18):10598-10606.
    [19]李璐璐,江韬,闫金龙,等.三峡库区典型消落带土壤及沉积物中溶解性有机质(DOM)的紫外-可见光谱特征[J].环境科学,2014,35(3):933-941.Li L L,Jiang T,Yan J L,et al. Ultraviolet-visible(UV-Vis)spectral characteristics of dissolved organic matter(DOM)in soils and sediments of typical water-level fluctuation zones of Three Gorges Reservoir areas[J]. Environmental Science,2014,35(3):933-941.
    [20]高洁,江韬,李璐璐,等.三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J].环境科学,2015,36(1):151-162.Gao J,Jiang T,Li L L,et al. Ultraviolet-visible(UV-Vis)and fluorescence spectral characteristics of dissolved organic matter(DOM)in soils of water-level fluctuation zones of the Three Gorges Reservoir region[J]. Environmental Science,2015,36(1):151-162.
    [21]王齐磊,江韬,赵铮,等.三峡库区典型农业小流域土壤溶解性有机质的紫外-可见及荧光特征[J].环境科学,2015,36(3):879-887.Wang Q L,Jiang T,Zhao Z,et al. Ultraviolet-visible(UV-Vis)and fluorescence spectral characteristics of soil dissolved organic matter(DOM)in typical agricultural watershed of Three Gorges Reservoir region[J]. Environmental Science,2015,36(3):879-887.
    [22] Zhang Y L,Du J Z,Ding X P,et al. Comparison study of sedimentary humic substances isolated from contrasting coastal marine environments by chemical and spectroscopic analysis[J].Environmental Earth Sciences, 2016, 75(5):378, doi:10. 1007/s12665-016-5263-8.
    [23] Kaal J,Wagner S,JafféR. Molecular properties of ultrafiltered dissolved organic matter and dissolved black carbon in headwater streams as determined by pyrolysis-GC-MS[J]. Journal of Analytical and Applied Pyrolysis,2016,118:181-191.
    [24] Sparks D L. Environmental soil chemistry(2nd ed.)[M]. San Diego,US:Academic Press,2003. 86-87.
    [25] Zhang Y L,Qin B Q,Chen W M,et al. A preliminary study of chromophoric dissolved organic matter(CDOM)in Lake Taihu,a shallow subtropical lake in China[J]. CLEAN—Soil,Air,Water,2005,33(4):315-323.
    [26] Zhang Y L,Van Dijk M A,Liu M L,et al. The contribution of phytoplankton degradation to chromophoric dissolved organic matter(CDOM)in eutrophic shallow lakes:field and experimental evidence[J]. Water Research,2009,43(18):4685-4697.
    [27] Ghabbour E A,Davies G,Mac Carthy P. The principles of humic substances:an introduction to the first principle[A]. In:Ghabbour E A, Davies G(Eds.). Humic Substances:Structures,Models and Functions[M]. Gateshead,UK:Royal Society of Chemistry,2001.
    [28] Zsolnay. Dissolved organic matter:artefacts,definitions,and functions[J]. Geoderma,2003,113(3-4):187-209.
    [29] Kothawala D N,Roehm C,Blodau C,et al. Selective adsorption of dissolved organic matter to mineral soils[J]. Geoderma,2012,189-190:334-342.
    [30] Ohno T,Bro R. Dissolved organic matter characterization using multiway spectral decomposition of fluorescence landscapes[J].Soil Science Society of America Journal,2006,70(6):2028-2037.
    [31] Perdue E M,Benner R. Marine organic matter[A]. In:Senesi N, Xing B S, Huang P M(Eds.). Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems[M]. Hoboken,New Jersey,US:John Wiley&Sons,2009.
    [32] Coble P G,Lead J,Baker A,et al. Cambridge environmental chemistry series:Aquatic organic matter fluorescence[M].Cambridge,UK:Cambridge University Press,2014.
    [33] Fellman J B, Hood E, Spencer R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems:a review[J]. Limnology and Oceanography,2010,55(6):2452-2462.
    [34] Findlay S E G, Sinsabaugh R L. Aquatic ecosystems:interactivity of dissolved organic matter[M]. San Diego:Academic Press,2003.
    [35] Dittmar T,Stubbins A. Dissolved organic matter in aquatic systems[J]. Treatise on Geochemistry,2014,12:125-156.
    [36] Xiao Y H,Sara-Aho T,Hartikainen H,et al. Contribution of ferric iron to light absorption by chromophoric dissolved organic matter[J]. Limnology and Oceanography,2013,58(2):653-662.
    [37] Poulin B A,Ryan J N,Aiken G R. Effects of iron on optical properties of dissolved organic matter[J]. Environmental Science&Technology,2014,48(17):10098-10106.
    [38] Sleighter R L,Cory R M,Kaplan L A,et al. A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream[J]. Journal of Geophysical Research:Biogeosciences,2014,119(8):1520-1537.
    [39] Bianchi T S,Canuel E A. Chemical biomarkers in aquatic ecosystems[M]. Princeton, New Jersey, US:Princeton University Press,2011.
    [40] Romankevich E A. Geochemistry of organic matter in the ocean[M]. Berlin,Heidelberg:Springer,1984.
    [41] Weishaar J L,Aiken G R,Bergamaschi B A,et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J].Environmental Science&Technology,2003,37(20):4702-4708.
    [42]冯胜,张运林,秦伯强.太湖梅梁湾有色可溶性有机物的光化学降解[J].中国环境科学,2006,26(4):404-408.Feng S,Zhang Y L,Qin B Q. Photochemical degradation of chromophoric dissolved organic matter in Meiliang Bay of Lake Taihu[J]. China Environmental Science,2006,26(4):404-408.
    [43]高洁,江韬,闫金龙,等.天然日光辐照下两江交汇处溶解性有机质(DOM)光漂白过程:以涪江-嘉陵江为例[J].环境科学,2014,35(9):3397-3407.Gao J,Jiang T,Yan J L,et al. Photobleaching of dissolved organic matter(DOM)from confluence of two rivers under natural solar radiation:A case study of Fujiang River-Jialingjiang River[J]. Environmental Science,2014,35(9):3397-3407.
    [44]郭卫东,程远月.天然日光辐照下河口区CDOM的光化学降解[J].环境科学,2008,29(6):1463-1468.Guo W D, Cheng Y Y. Photodegradation of chromophoric dissolved organic matter from Jiulong River estuary under natural solar radiation[J]. Environmental Science,2008,29(6):1463-1468.
    [45] Zhang Y L,Liu M L,Qin B Q,et al. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation[J]. Hydrobiologia,2009,627(1):159-168.
    [46] Obernosterer I,Benner R. Competition between biological and photochemical processes in the mineralization of dissolved organic carbon[J]. Limnology and Oceanography,2004,49(1):117-124.
    [47] Fimmen R L,Cory R M,Chin Y P,et al. Probing the oxidationreduction properties of terrestrially and microbially derived dissolved organic matter[J]. Geochimica et Cosmochimica Acta,2007,71(12):3003-3015.
    [48] O'Driscoll N J,Siciliano S D,Peak D,et al. The influence of forestry activity on the structure of dissolved organic matter in lakes:implications for mercury photoreactions[J]. Science of the Total Environment,2006,366(2-3):880-893.
    [49] Sulzberger B,Durisch-Kaiser E. Chemical characterization of dissolved organic matter(DOM):a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability[J]. Aquatic Sciences,2009,71(2):104-126.
    [50] Hansen A M,Kraus T E C,Pellerin B A,et al. Optical properties of dissolved organic matter(DOM):effects of biological and photolytic degradation[J]. Limnology and Oceanography,2016,61(3):1015-1032.
    [51] Helms J R,Stubbins A,Ritchie J D,et al. Absorption spectral slopes and slope ratios as indicators of molecular weight,source,and photobleaching of chromophoric dissolved organic matter[J].Limnology and Oceanography,2008,53(3):955-969.
    [52] Cory R M,Crump B C,Dobkowski J A,et al. Surface exposure to sunlight stimulates CO2release from permafrost soil carbon in the Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(9):3429-3434.
    [53] Cory R M,Ward C P,Crump B C,et al. Sunlight controls water column processing of carbon in arctic fresh waters[J]. Science,2014,345(6199):925-928.
    [54] Stanley E H,Powers S M,Lottig N R,et al. Contemporary changes in dissolved organic carbon(DOC)in human-dominated rivers:is there a role for DOC management?[J]. Freshwater Biology,2012,57(S1):26-42.
    [55] Solomon C T, Jones S E, Weidel B C, et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes:current knowledge and future challenges[J].Ecosystems,2015,18(3):376-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700