用户名: 密码: 验证码:
不同粒径处理的土壤全氮含量高光谱特征拟合模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fitting Model of Soil Total Nitrogen Content in Different Soil Particle Sizes Using Hyperspectral Analysis
  • 作者:王海江 ; 刘凡 ; YUNGER ; John ; A ; 崔静 ; 马玲
  • 英文作者:WANG Haijiang;LIU Fan;YUNGER John A;CUI Jing;MA Ling;College of Agronomy,Shihezi University;Key Laboratory of Oasis Eco-agriculture,Xinjiang Production and Construction Group;Department of Biology,Governors State University;
  • 关键词:土壤 ; 全氮含量 ; 土壤粒径 ; 高光谱 ; 模型
  • 英文关键词:soil;;total nitrogen content;;soil particle sizes;;hyperspectral;;model
  • 中文刊名:农业机械学报
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:石河子大学农学院;新疆生产建设兵团绿洲生态农业重点实验室;伊利诺伊州长州立大学生物系;
  • 出版日期:2018-12-28 15:55
  • 出版单位:农业机械学报
  • 年:2019
  • 期:02
  • 基金:国际科技合作项目(2015DFA11660);; 石河子大学校级项目(RCZX201522);; 兵团重大科技计划项目(2018AA004)
  • 语种:中文;
  • 页:202-211
  • 页数:10
  • CN:11-1964/S
  • ISSN:1000-1298
  • 分类号:S153.6
摘要
采集新疆北疆棉田385个自然土壤样本,将筛选出的土壤样品分别过2、1、0. 5、0. 15 mm筛并测定其原始光谱反射率,利用支持向量机(Support vector machine,SVM)、偏最小二乘回归(Partial least squares regression,PLSR)和多元逐步线性回归(Stepwise multiple linear regression,SMLR)方法对土壤原始光谱及其12种光谱变换数据分别构建土壤全氮含量的估测模型,并对模型精度进行检验。结果表明,土壤原始光谱特征在各个波段与全氮含量相关性都较差,不同形式的数据变换均能够提高光谱反射率与全氮含量的相关性,同一种数据变换形式在不同粒径处理中最大相关系数所对应的波段位置差异不大。从不同粒径处理的拟合精度来看,过筛粒径越小对全氮含量的估测精度越高,3种方法的最优拟合模型都是过0. 15 mm筛的处理,其中SVM方法采用(lgR)'变换后,构建模型R2c为0. 898 7,RMSEc为0. 018 1,RPD为2. 704 9,PLSR和SMLR方法均采用R'变换,构建模型的R2c分别为0. 852 0和0. 819 6,RMSEc分别为0. 041 3和0. 043 6,RPD分别为2. 554 9和2. 437 4,3种方法在该过筛处理下均能够很好地估测土壤全氮含量。用未参与建模的样本对3种最优模型进行验证,SVM、PLSR和SMLR模型的检验R2分别为0. 822 9、0. 771 5和0. 705 4,SVM方法优于PLSR和SMLR,模型具有较好的精度和稳定性,从模型的预测误差来看,土壤全氮含量越低其预测误差也越大,在氮素含量较低的情况下无法直接通过光谱反射特征准确反演。
        Hyperspectral remote sensing technology is a powerful tool in the analysis of soil compositions as well as soil physical and chemical properties. Totally 385 natural soil samples were collected from cotton fields in North Xinjiang Province,the selected soil samples according to the total nitrogen content were processed by 2 mm,1 mm,0. 5 mm and 0. 15 mm sieves, and their spectral reflectance characteristics were measured. After the transformation of spectral data with twelve forms,the spectral inversion models of soil nitrogen content were established based on support vector machine( SVM),partial least squares regression( PLSR) and stepwise multiple linear regression( SMLR),and the accuracy and universality of the model were tested. The results showed that there was no significant correlation between the original spectral characteristics and soil nitrogen content,and which can be improved by different data transformations. In the same data transformation,there was no obvious difference in the band position corresponding to the maximum correlation coefficient in different particle size processing. According to the fitting accuracy of different particle size treatments,the smaller the particle size of the sieve was,the higher the precision of the total nitrogen content was,the optimal fitting models of the three methods were all processed by 0. 15 mm sieve treatment,the SVM method used( lgR) ' transformation,the model Rc2 was 0. 898 7,the RMSEcwas 0. 018 1 and the RPD was 2. 704 9,the PLSR and the SMLR methods used R' transformation,the Rc2 were 0. 852 0 and 0. 819 6,the RMSEc was 0. 041 3 and 0. 043 6,and the RPD was 2. 554 9 and 2. 437 4,respectively. The optimal model was checked with the samples which were not involved in building model and the R2 of SVM,PLSR and SMLR were 0. 882 9,0. 771 5 and 0. 705 4,respectively. From the prediction error of the model,the lower the soil total nitrogen content was,the greater the prediction error was,it was impossible to accurately estimate the soil total nitrogen content by spectral reflectance characteristics.
引文
[1] O'ROURKE S M,HOLDEN N M. Determination of soil organic matter and carbon fractions in forest top soils using spectral dataacquired from visible-near infrared hyperspectral images[J]. Soil Science Society of America Journal,2012,76(2):586-596.
    [2]史舟,梁宗正,杨媛媛,等.农业遥感研究现状与展望[J/OL].农业机械学报,2015,46(2):247-260.SHI Zhou, LIANG Zongzheng, YANG Yuanyuan, et al. Status and prospect of agricultural remote sensing[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2015,46(2):247-260. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20150237&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298. 2015. 02. 037.(in Chinese)
    [3]李民赞,郑立华,安晓飞,等.土壤成分与特性参数光谱快速检测方法及传感技术[J/OL].农业机械学报,2013,44(3):73-87.LI Minzan,ZHENG Lihua,AN Xiaofei,et al. Fast measurement and advanced sensors of soil parameters with NIR spectroscopy[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(3):73-87. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20130315&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298.2013. 03. 015.(in Chinese)
    [4]卢艳丽,白由路,王磊,等.黑土土壤中全氮含量的高光谱预测分析[J].农业工程学报,2010,26(1):256-261.LU Yanli,BAI Youlu,WANG Lei,et al. Determination for total nitrogen content in black soil using hyperspectral data[J].Transactions of the CSAE,2010,26(1):256-261.(in Chinese)
    [5]侯艳军,塔西甫拉提·特依拜,买买提·沙吾提,等.荒漠土壤有机质含量高光谱估算模型[J].农业工程学报,2014,30(16):113-120.HOU Yanjun,TASHPOLAT·Tiyip,MAMAT·Sawut,et al. Estimation model of desert soil organic matter content usinghyperspectral data[J]. Transactions of the CSAE,2014,30(16):113-120.(in Chinese)
    [6]纪文君,史舟,周清,等.几种不同类型土壤的VIS-NIR光谱特性及有机质响应波段[J].红外与毫米波学报,2012,31(3):277-282.JI Wenjun,SHI Zhou,ZHOU Qing,et al. VIS-NIR reflectance spectroscopy of the organic matter in several types of soils[J].Journal of Infrared and Millimeter Waves,2012,31(3):277-282.(in Chinese)
    [7]张娟娟,田永超,姚霞,等.基于近红外光谱的土壤全氮含量估算模型[J].农业工程学报,2012,28(12):183-188.ZHANG Juanjuan,TIAN Yongchao,YAO Xia,et al. Estimating model of soil total nitrogen content based on near-infraredspectroscopy analysis[J]. Transactions of the CSAE,2012,28(12):183-188.(in Chinese)
    [8]刘秀英,王力,宋荣杰,等.黄绵土风干过程中土壤含水率的光谱预测[J/OL].农业机械学报,2015,46(4):266-272.LIU Xiuying,WANG Li,SONG Rongjie et al. Prediction of soil moisture content in air-drying loess using spectral data[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(4):266-272. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20150439&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298.2015. 04. 039.(in Chinese)
    [9] FAN R Q,YANG X M,ZHANG X P,et al. Prediction of soil organic carbon in different soil fractions of black soils inNortheast China using near-infrared reflectance spectroscopy[J]. Spectroscopy and Spectral Analysis,2012,2(2):349-353.
    [10]叶勤,姜雪芹,李西灿,等.基于高光谱数据的土壤有机质含量反演模型比较[J/OL].农业机械学报,2017,48(3):164-172.YE Qing, JIANG Xueqing, LI Xican, et al. Comparison on inversion model of soil organic matter content based onhyperspectral data[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(3):164-172. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20170321&journal_id=jcsam. DOI:10. 6041/j.issn. 1000-1298. 2017. 03. 021.(in Chinese)
    [11]张瑶,李民赞,郑立华,等.基于近红外光谱分析的土壤分层氮素含量预测[J].农业工程学报,2015,31(9):121-126.ZHANG Yao,LI Minzan,ZHENG Lihua,et al. Prediction of soil total nitrogen content in different layers based on nearinfrared spectral analysis[J]. Transactions of the CSAE,2015,31(9):121-126.(in Chinese)
    [12] FORRESTER S T,JANIK L J,SORIANO-DISLA J M,et al. Use of handheld mid-infrared spectroscopy and partial least-squares regression for the prediction of the phosphorus buffering index in Australian soils[J]. Soil Research,2015,53(1):67-80.
    [13] TAMBURINI E,VINCENZI F,COSTA S,et al. Effects of moisture and particle size on quantitative determination of totalorganic carbon(TOC)in soils using near-infrared spectroscopy[J]. Sensors,2017,17(10):2366.
    [14]郭熙,叶英聪,谢碧裕,等.南方丘陵稻田土碱解氮高光谱特征及反演模型研究[J].国土资源遥感,2015,27(2):94-99.GUO Xi,YE Yingcong,XIE Biyu,et al. Inversion of available nitrogen content in hilly paddy soil of southern China based onhyperspectral characteristics[J]. Remote Sensing for Land and Resources,2015,27(2):94-99.(in Chinese)
    [15]陈红艳,赵庚星,李希灿,等.基于DWT-GA-PLS的土壤碱解氮含量高光谱估测方法[J].应用生态学报,2013,24(11):3185-3191.CHEN Hongyan,ZHAO Gengxing,LI Xican,et al. Hyper spectral estimation method for soil alkali hydrolysable nitrogencontent based on discrete wavelet transform and genetic algorithm in combining with partial least squares(DWT-GA-PLS)[J].Chinese Journal of Applied Ecology,2013,24(11):3185-3191.(in Chinese)
    [16]徐丽华,谢德体,魏朝富,等.紫色土土壤全氮和全磷含量的高光谱遥感预测[J].光谱学与光谱分析,2013,33(3):723-727.XU Lihua,XIE Deti,WEI Chaofu,et al. Prediction of total nitrogen and total phosphorus concentrations in purple soil usinghyperspectral data[J]. Spectroscopy and Spectral Analysis,2013,33(3):723-727.(in Chinese)
    [17]刘雪梅,柳建设.基于MC-UVE的土壤碱解氮和速效钾近红外光谱检测[J/OL].农业机械学报,2013,44(3):88-91.LIU Xuemei,LIU Jianshe. Near-infrared spectroscopy determination of soil available N and available K based on MC-UVEmethod[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(3):88-91. http:∥www. j-csam.org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20130316&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298. 2013. 03. 016.(in Chinese)
    [18] WU Q,YANG Y H,XU Z L,et al. applying local neural network and visible/near-infrared spectroscopy to estimatingavailable nitrogen,phosphorus and potassium in soil[J]. Spectroscopy&Spectral Analysis,2014,34(8):2102-2105.
    [19] SHI T Z,CUI L J,WANG J J,et al. Comparison of multivariate methods for estimating soil total nitrogen with visible/near-infrared spectroscopy[J]. Plant&Soil,2013,366(1):363-375.
    [20] YU X,LIU Q,WANG Y B,et al. Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong Peninsula[J]. Catena,2016,137:340-349.
    [21]汤明尧,王骞.新疆棉区耕地土壤养分现状分析[J].新疆农业科技,2014(5):43-45.TANG Mingyao,WANG Qian. Analysis status of cotton farmland soil nutrient in Xinjiang[J]. Xinjiang Agricultural Scienceand Technology,2014(5):43-45.(in Chinese)
    [22]赵燕东,皮婷婷.北京地区粘壤土全氮含量的光谱预测模型[J/OL].农业机械学报,2016,47(3):144-149.ZHAO Yandong,PI Tingting. Spectral prediction model of soil total nitrogen content of clay loam soil in Beijing[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2016,47(3):144-149. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20160321&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298. 2016. 03.021.(in Chinese)
    [23]王一丁,赵铭钦,刘鹏飞,等.基于高光谱分析的植烟土壤有机质和全氮含量预测研究[J].中国烟草学报,2016,22(3):44-51.WANG Yiding,ZHAO Mingqin,LIU Pengfei,et al. Prediction of organic matter and total nitrogen contents in tobacco-growingsoil based on hyper-spectral analysis[J]. Acta Tabacaria Sinica,2016,22(3):44-51.(in Chinese)
    [24]张娟娟,田永超,姚霞,等.基于高光谱的土壤全氮含量估测[J].自然资源学报,2011,26(5):881-890.ZHANG Juanjuan,TIAN Yongchao,YAO Xia,et al. Estimating soil total nitrogen content based on hyperspectral analysistechnology[J]. Journal of Natural Resources,2011,26(5):881-890.(in Chinese)
    [25]李焱,王让会,管延龙,等.基于高光谱反射特性的土壤全氮含量预测分析[J].遥感技术与应用,2017,32(1):173-179.LI Yan,WANG Ranghui,GUAN Yanlong,et al. Prediction analysis of total nitrogen content based on hyperspectral[J].Remote Sensing Technology and Application,2017,32(1):173-179.(in Chinese)
    [26] JIANG Q,LI Q,WANG X,et al. Estimation of soil organic carbon and total nitrogen in different soil layers using VNIRspectroscopy:effects of spiking on model applicability[J]. Geoderma,2017,293:54-63.
    [27]栾福明,熊黑钢,王芳,等.基于小波分析的土壤碱解氮含量高光谱反演[J].光谱学与光谱分析,2013,33(10):2828-2832.LUAN Fuming, XIONG Heigang, WANG Fang, et al. The inversion of soil alkaline hydrolysis nutrient content withhyperspectral reflectance based on wavelet analysis[J]. Spectroscopy and Spectral Analysis,2013,33(10):2828-2832.(in Chinese)
    [28] JIA S Y,Li H Y,WANG Y J,et al. Hyperspectral imaging analysis for the classification of soil types and the determination ofsoil total nitrogen[J]. Sensors,2017,17(10):2252.
    [29]郑光辉,焦彩霞,赏刚,等.土壤全氮反射光谱估算机理研究[J].光谱学与光谱分析,2016,36(10):3222-3225.ZHENG Guanghui,JIAO Caixia,SHANG Gang,et al. A mechanism study of reflectance spectroscopy for predicting soil totalnitrogen[J]. Spectroscopy and Spectral Analysis,2016,36(10):3222-3225.(in Chinese)
    [30]宋海燕,秦刚,韩小平,等.基于可见光谱的不同质地土壤有机质快速测定[J].农业机械学报,2012,43(7):69-72.SONG Haiyan,QIN Gang,HAN Xiaoping,et al. Rapid prediction of soil organic matter by using visible infrared spectraltechnology[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(7):69-72. http:∥www. j-csam.org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20120712&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298. 2012. 07. 012.(in Chinese)
    [31]纪文君,史舟,周清,等.几种不同类型土壤的VIS-NIR光谱特性及有机质响应波段[J].红外与毫米波学报,2012,31(3):277-282.JI Wenjun,SHI Zhou,ZHOU Qing,et al. VIS-NIR reflectance spectroscopy of the organic matter in several types of soils[J].Journal of Infrared and Millimeter Waves,2012,31(3):277-282.(in Chinese)
    [32] BAO N S,WU L X,YE B Y,et al. Assessing soil organic matter of reclaimed soil from a large surface coal mine using a fieldspectroradiometer in laboratory[J]. Geoderma,2017,288:47-55.
    [33] LIN L X,WANG Y J,TENG J Y,et al. Hyperspectral analysis of soil organic matter in coal mining regions using wavelets,correlations,and partial least squares regression[J]. Environmental Monitoring&Assessment,2016,188(2):97-106.
    [34] LIN L X,XUE F C,WANG Y J,et al. Photography measured-value magnification improves local correlation maximization-complementary superiority method of hyperspectral analysis of soil total nitrogen[J]. Catena,2018,165(9):106-114.
    [35] LV Y,SUN Z. Multi-angular spectral reflectance to characterize the particle size of surfaces of desert and cultivated soil[J].European Journal of Soil Science,2016,67(3):253-265.
    [36] SENOL H,AKGUL M,MUJDECI M,et al. Visible near-infrared reflectance spectroscopy determination of some chemicalcharacteristics of different particular sizes in soils[J]. Asian Journal of Chemistry,2013,25(12):6843-6846.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700