用户名: 密码: 验证码:
一种评价水泥浆沉降稳定性的新方法——微压力波动测试水泥浆滤失—沉降耦合作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A new method for evaluating settlement stability of cement slurry:Micro-pressure fluctuation tests for cement slurry filtration–settlement coupling
  • 作者:王涛 ; 申峰 ; 马振锋 ; 杨先伦 ; 王维琨 ; 贾红军
  • 英文作者:Wang Tao;Shen Feng;Ma Zhenfeng;Yang Xianlun;Wang Weikun;Jia Hongjun;Research Institute, Shaanxi Yanchang Petroleum Co., Ltd.;Shaanxi Key Laboratory of Lacustrine Shale Gas Accumulation and Exploitation ;SEDIN Engineering Co., Ltd., CNCEC;PetroChina Tarim Oilfield Company;
  • 关键词:微压力 ; 波动 ; 水泥浆 ; 沉降稳定性 ; 滤失 ; 触变性 ; 评价方法
  • 英文关键词:Micro-pressure;;Fluctuation;;Cement slurry;;Settlement stability;;Water loss;;Thixotropy;;Evaluation method
  • 中文刊名:天然气工业
  • 英文刊名:Natural Gas Industry
  • 机构:陕西延长石油(集团)有限责任公司研究院;陕西省陆相页岩气成藏与开发重点实验室(筹);中国化学赛鼎工程有限公司;中国石油塔里木油田公司;
  • 出版日期:2019-08-25
  • 出版单位:天然气工业
  • 年:2019
  • 期:08
  • 基金:国家科技重大专项“陆相页岩气水平井高效低成本钻完井技术”(编号:2017ZX05039003)
  • 语种:中文;
  • 页:102-109
  • 页数:8
  • CN:51-1179/TE
  • ISSN:1000-0976
  • 分类号:TE256.7
摘要
目前的水泥浆沉降稳定性测试方法缺乏对沉降过程的描述。为了提高水泥浆沉降稳定性测试的准确性与科学性,设计了一种微压力波动测试仪,对滤失—沉降耦合作用的水泥浆柱分段压力波动进行测试,据此评价浆体的上、下密度差,并对不同黏度、温度、降失水剂、固相颗粒和触变性的水泥浆稳定性进行了分析。研究结果表明:①水泥浆沉降过程可分为高速期、低速期、稳定期和失重期,高速期滤失可减小浆体的上、下密度差;②滤失量越大、黏度越低、同类材料水固比越大,密度差越大、沉降稳定性越差;③温度对沉降稳定性的影响因降失水剂的协同作用而呈现出无规律性,高分子聚合物类降失水剂效果强于成膜类;④提高水泥浆触变性可改善浆体的沉降分层现象,胶凝强度的形成时间越短,效果越好。结论认为,较之于常规方法,该评价水泥浆沉降稳定性的新方法,可以对沉降全过程进行描述,并考虑了滤失对沉降的影响,更加贴合于井下的实际情况。
        The existing cement slurry settlement stability test methods cannot describe the process of settlement. To improve the accuracy and scientific nature of cement slurry settlement stability tests, we designed a micro-pressure fluctuation tester to test the pressure fluctuation at each segment of slurry column under the coupling condition of water loss and settlement. And based on this, we evaluated the upper-lower density difference of the slurry, and analyzed the stability of the cement slurry at different viscosities, temperatures, water losses, solid particles and thixotropy. And the following research results were obtained. First, the settlement process of cement slurry can be divided into high speed period, low speed period, stable period and weightlessness period, and the water loss in the high speed period can reduce the upper-lower density difference of the slurry. Second, the larger the water loss, the lower the viscosity. For the materials of the same type, the greater the water-solid ratio, the greater the density difference and the poorer the settlement stability. Third, the effect of temperature on the settlement stability is irregular due to the synergetic effect of water loss reducer. The effect of the water loss reducer of high molecular polymer type is stronger than that of film-forming type. Fourth, increasing the thixotropy of cement slurry can improve its settlement stratification. The shorter the formation time of bonding strength, the better the effect. In conclusion, compared with the conventional method for evaluating the settlement stability of cement slurry, this new method can describe the whole process of sedimentation and it takes the effect of water loss on settlement into consideration, so it can reflect the actual downhole situations more accurately.
引文
[1]瞿佳.大温差超高密度水泥浆固井技术研究与应用[J].钻采工艺, 2012, 35(3):17-20.Qu Jia. Research and application of cementing technology of high differential temperature ultrahigh density cement slurry[J].Drilling&Production Technology, 2012, 35(3):17-20.
    [2]李泽林,常伟,王秀玲,逯振东,陈利.高温防窜水泥浆体系的研究及应用[J].断块油气田, 2004, 11(4):68-70.Li Zelin, Chang Wei, Wang Xiuling, Lu Zhendong&Chen Li.Study and application of high temperature anti-channeling cement slurry system[J]. Fault-Block Oil&Gas Field, 2004, 11(4):68-70.
    [3]苏博勇,姜宏图,马淑梅,霍维维.胶乳水泥浆体系在深井水平井的应用[J].石油钻采工艺, 2010, 32(5):53-55.Su Boyong, Jiang Hongtu, Ma Shumei&Huo Weiwei. Application of latex cement slurry system in deep horizontal well[J]. Oil Drilling&Production Technology, 2010, 32(5):53-55.
    [4]卢海川,宋伟宾,谢承斌,陈若堂,高继超,安少辉,等.纳米基低密度水泥浆体系的研究与应用[J].油田化学, 2018,35(3):381-385.Lu Haichuan, Song Weibin, Xie Chengbin, Chen Ruotang, Gao Jichao, An Shaohui, et al. Study and application of nanometer low-density cement slurry[J]. Oilfield Chemistry, 2018, 35(3):381-385.
    [5]张顺平,张森,覃毅,丁志伟,靳建洲,徐明,等.威远页岩气水平井高密度防窜水泥浆固井技术[J].钻井液与完井液,2016, 33(1):63-67.Zhang Shunping, Zhang Sen, Qin Yi, Ding Zhiwei, Jin Jianzhou,Xu Ming, et al. Anti-channeling high density cement slurry technology for horizontal shale gas well in Weiyuan[J]. Drilling Fluid&Completion Fluid, 2016, 33(1):63-67.
    [6]于小龙,王涛,刘云,李伟峰.无氯低温早强剂及其在浅层水平井固井中的应用[J].探矿工程(岩土钻掘工程), 2016,43(4):55-58.Yu Xiaolong, Wang Tao, Liu Yun&Li Weifeng. Chloride-free and low temperature early strength agent and the application in cementing of shallow horizontal well[J]. Exploration Engineering(Rock&Soil Drilling and Tunneling), 2016, 43(4):55-58.
    [7]马旭,龚伟安,谢建华,赵文.套管水泥环的室内破坏试验及力学分析[J].石油机械, 2000, 28(4):15-18.Ma Xu, Gong Wei'an, Xie Jianhua&Zhao Wen. Lab test of destruction of cement sheath outside casing[J]. China Petroleum Machinery, 2000, 28(4):15-18.
    [8]郭雪利,李军,柳贡慧,范明涛.温—压作用下水泥环缺陷对套管应力的影响[J].石油机械, 2018, 46(4):112-118.Guo Xueli, Li Jun, Liu Gonghui&Fan Mingtao. Influence of cement sheath defect on casing stress under temperature-pressure effect[J]. China Petroleum Machinery, 2018, 46(4):112-118.
    [9]王毅,彭志刚,徐浩然.水平井复合水泥浆体系研究及应用[J].钻采工艺, 2011, 34(2):103-105.Wang Yi, Peng Zhigang&Xu Haoran. Research and application of compound cement slurry in horizontal well[J]. Drilling&Production Technology, 2011, 34(2):103-105.
    [10]蒋可,李黔,陈远林,郭雪利,付永强,李军.页岩气水平井固井质量对套管损坏的影响[J].天然气工业, 2015, 35(12):77-82.Jiang Ke, Li Qian, Chen Yuanlin, Guo Xueli, Fu Yongqiang&Li Jun. Influence of cementing quality on casing failures in horizontal shale gas wells[J]. Natural Gas Industry, 2015, 35(12):77-82.
    [11]黄柏宗,李宝贵,李希珍,高旭,燕平,高光第.模拟井下温度压力条件的水泥浆沉降稳定性研究[J].钻井液与完井液,2000, 17(2):1-7.Huang Bozong, Li Baogui, Li Xizhen, Gao Xu, Yan Ping&Gao Guangdi. A study on the settling stability of cement slurry in simulated bottom hole condition[J]. Drilling Fluid&Completion Fluid, 2000, 17(2):1-7.
    [12]宋元洪,杨远光,张玉平,杨海涛,和建勇,黄霞,等.高密度水泥浆沉降稳定性评价方法探讨[J].钻井液与完井液, 2015,32(6):54-56.Song Yuanhong, Yang Yuanguang, Zhang Yuping, Yang Haitao,He Jianyong, Huang Xia, et al. Determination of parameters controlling sedimentation stability of high density cement slurries[J].Drilling Fluid&Completion Fluid, 2015, 32(6):54-56.
    [13]于永金,刘硕琼,袁进平,靳建洲,齐奉忠,李明.高温条件下水泥浆沉降稳定性的评价方法[J].钻井液与完井液, 2011,28(6):52-54.Yu Yongjin, Liu Shuoqiong, Yuan Jinping, Jin Jianzhou, Qi Fengzhong&Li Ming. Study on evaluation methods of sedimentation stability of cement slurry in high temperature[J]. Drilling Fluid&Completion Fluid, 2011, 28(6):52-54.
    [14]杨蓉,李相国,刘卓霖,徐鹏辉,蒋文广.磷铝酸盐水泥基灌浆材料流变性能及保水性能[J].硅酸盐通报, 2017, 36(6):2043-2048.Yang Rong, Li Xiangguo, Liu Zhuolin, Xu Penghui&Jiang Wenguang. Rheological property and water retention property of aluminophosphate cement-based grouting material[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6):2043-2048.
    [15]杨勇.新型抗高温水泥悬浮剂的研制与现场试验[J].石油钻探技术, 2016, 44(3):44-49.Yang Yong. Development and field application of a new high-temperature cement suspension agent[J]. Petroleum Drilling Techniques, 2016, 44(3):44-49.
    [16]Pourjavadi A, Fakoorpoor SM&Hosseini SH. Novel cationic-modified salep as an efficient flocculating agent for settling of cement slurries[J]. Carbohydrate Polymers, 2013, 93(2):506-511.
    [17]Vlachou V&Piau JM. A new tool for the rheometric study of oil well cement slurries and other settling suspensions[J]. Cement and Concrete Research, 2000, 30(10):1551-1557.
    [18]查露,栗晶,曹传胜,黄议,朱合华,柳朝晖,等.三维颗粒群沉降的格子Boltzmann模拟[J].中国科学院大学学报, 2016,33(2):240-246.Zha Lu, Li Jing, Cao Chuansheng, Huang Yi, Zhu Hehua, Liu Zhaohui, et al. Lattice Boltzmann simulation of three-dimensional particle group settlement[J]. Journal of University of Chinese Academy of Sciences, 2016, 33(2):240-246.
    [19]卢海川,周雪,王小文,张维滨,刘勇,宋伟宾,等.水泥浆沉降稳定性及防沉降剂的开发与应用[J].精细石油化工进展,2016, 17(5):11-14.Lu Haichuan, Zhou Xue, Wang Xiaowen, Zhang Weibin, Liu Yong, Song Weibin, et al. Cement slurry sedimentation stability and development and application of anti-sedimentation agent[J].Advances in Fine Petrochemicals, 2016, 17(5):11-14.
    [20]闫宇博,刘艳军,韩德勇,贺兴伟,常大红,朱悦,等.大温差低密度水泥浆体系在NP36-3804井的应用[J].钻井液与完井液, 2015, 32(3):73-75.Yan Yubo, Liu Yanjun, Han Deyong, He Xingwei, Chang Dahong, Zhu Yue, et al. Application of big differential temperature low density cement slurry in Well NP36-3804[J]. Drilling Fluid&Completion Fluid, 2015, 32(3):73-75.
    [21]刘学鹏,张明昌,方春飞.耐高温油井水泥降失水剂的合成和性能[J].钻井液与完井液, 2015, 32(6):61-64.Liu Xuepeng, Zhang Mingchang&Fang Chunfei. Synthesis and performance of a high temperature filter loss reducer for oil well cementing[J]. Drilling Fluid&Completion Fluid, 2015, 32(6):61-64.
    [22]夏亮亮,倪涛,刘昭洋,王进春.新型耐高温油井水泥降失水剂的合成及性能研究[J].油田化学, 2017, 34(3):417-421.Xia Liangliang, Ni Tao, Liu Zhaoyang&Wang Jinchun. Synthesis and performance of a new fluid loss additive for cement slurry with high temperature resistance[J]. Oilfield Chemistry, 2017,34(3):417-421.
    [23]陆屹,胡星琪,刘勇.一种新型油井水泥降失水剂的室内评价[J].钻井液与完井液, 2005, 22(6):19-21.Lu Yi, Hu Xingqi&Liu Yong. The laboratory evaluation of a new filtrate reducer for slurry[J]. Drilling Fluid&Completion Fluid, 2005, 22(6):19-21.
    [24]严思明,杨珅,王富辉,王永吉,吴亚楠,严圣东.新型耐高温油井降失水剂的合成与性能评价[J].石油学报, 2016, 37(5):672-679.Yan Siming, Yang Shen, Wang Fuhui, Wang Yongji, Wu Yanan&Yan Shengdong. Synthesis and performance evaluation of novel high-temperature-resistant fluid loss additive for oil wells[J]. Acta Petrolei Sinica, 2016, 37(5):672-679.
    [25]步玉环,尤军,姜林林.触变性水泥浆体系研究与应用进展[J].石油钻探技术, 2009, 37(4):110-114.Bu Yuhuan, You Jun&Jiang Linlin. Research and application of thixotropic cement slurry[J]. Petroleum Drilling Techniques,2009, 37(4):110-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700