用户名: 密码: 验证码:
南大西洋中脊热液区异化铁还原微生物及其矿化产物分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dissimilatory iron reducing microorganisms in South Mid-Atlantic Ridge hydrothermal fields and their mineralized products
  • 作者:李光玉 ; 曾湘 ; 邵宗泽
  • 英文作者:Guangyu Li;Xiang Zeng;Zongze Shao;School of Life Sciences, Xiamen University;Third Institute of Oceanography,State Oceanic Administration;Key Laboratory of Marine Biogenetic Resources,State Oceanic Administration;
  • 关键词:南大西洋中脊 ; 热液区 ; 硫化物 ; 异化铁还原微生物 ; 矿化产物
  • 英文关键词:South Mid-Atlantic Ridge;;hydrothermal fields;;polymetallic sulfides;;dissimilatory iron reducing microorganisms;;mineralized products
  • 中文刊名:微生物学报
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:厦门大学生命科学学院;自然资源部第三海洋研究所;自然资源部海洋生物遗传资源重点实验室;
  • 出版日期:2019-02-19 11:41
  • 出版单位:微生物学报
  • 年:2019
  • 期:07
  • 基金:国家重点研发计划(2018YFC0310701);; 中国大洋专项生物资源计划(DY135-B2-01)~~
  • 语种:中文;
  • 页:91-102
  • 页数:12
  • CN:11-1995/Q
  • ISSN:0001-6209
  • 分类号:Q939.9
摘要
【目的】从深海热液区获取异化铁还原微生物(Dissimilatory iron reducing microorganisms,DIRM),分析其矿化速率和矿化产物,认识其参与的深海生物地球化学循环。【方法】以羟基氧化铁(FeOOH)为电子受体,以乙酸等简单有机物做电子供体,在60°C恒温厌氧条件下,对南大西洋中脊深海热液区硫化物样品中的DIRM进行富集、培养;采用扫描电镜(SEM)和透射电镜(TEM)、选区电子衍射(SAED)以及能谱仪(EDS)等方法对矿化产物进行形貌观察与成分分析。【结果】从2个硫化物样品中,共获得了139个铁还原培养物,它们均能将培养基中FeOOH (Fe3+90 mmol/L)转化为矿化产物。电镜下可见明显的晶体形态,以立方体形晶体为主,边长为5.0–20.0 nm;EDS分析表明,所有矿物晶体的主要元素为铁和氧,推测是由菱铁矿和磁铁矿组成的混合矿物。矿物晶体形成的时间差异较大,从3d到54d不等,多数培养物可在11 d到20 d内形成晶体。微生物多样性表明,培养物中优势菌主要为厚壁菌门(Firmicutes)和广古菌门(Euryarchaeota),包括一氧化碳胞菌(Carboxydocella)与脱硫肠状菌(Desulfotomaculum)近似新物种(16SrRNA基因同源性89%–91%)和广古菌地丸菌(Geoglobus)。【结论】热液区高温厌氧细菌与古菌可以利用简单有机物为电子供体进行铁还原,形成铁氧化物晶体。实验结果对于微生物参与铁元素的生物地球化学循环与矿物形成的潜力具有支持作用。然而它们是否参与了热液区铁元素的生物地球化学循环与矿物形成还需要大量研究工作验证。
        [Objective] To obtain the dissimilatory iron reducing microorganisms(DIRM) from deep sea hydrothermal fields, analyze their mineralization ability and mineralization products, to further understand their role in iron biogeochemical cycle. [Methods] We enriched and cultivated DIRM from polymetallic sulfides of South Mid-Atlantic Ridge hydrothermal fields with FeOOH as an electron acceptor, and acetic acid etc. as electron donor under the constant 60 °C temperature anaerobic condition. The morphology observation and elemental composition analysis on mineralized products were carried out by scanning electron microscope, transmission electron microscope, selected area electron diffraction and Energy Dispersive Spectrometer. [Results] We obtained a total of 139 iron reducing microbial cultures from 2 polymetallic sulfides. All of them could transform FeOOH(Fe3+ 90 mmol/L) into mineralized iron products with obvious crystal structure, mainly in cubic shape with side length ranged from 5.0 nm to 20.0 nm. According to Energy Dispersive Spectrometer analysis, the elements of all mineral crystals were iron and oxygen, presumably a mixed mineral composed crystal of siderite and magnetite. The time of formation of mineral crystals varies from 3 to 54 d, and most cultures can form crystals within 11 to 20 d. Microbial diversity indicated that the dominant microorganisms in the culture were mainly Firmicutes and Euryarchaeota, including Carboxydocella and Desulfotomaculum, a new species(16 S rRNA Homology 89%–91%) and Geoglobus. [Conclusion] At 60 °C, bacteria and archaea in hydrothermal fields could transform ferric iron to mixed iron oxides mineral with the simple organic compounds as electron donor. These results supported the potential of microorganisms to participate in the biogeochemical cycle and mineralization. However, it requires extensive research work to verify their roles in situ.
引文
[1]Chinese Ocean Mineral Resources Research and Development Association Office.Chinese gazetteer of undersea features on the international seabed 2016.Beijing:China Ocean Press,2016:388-389.(in Chinese)中国大洋矿产资源研究开发协会办公室.中国大洋海底地理实体名录(2016).北京:海洋出版社,2016:388-389.
    [2]Ye J,Shi XF,Yang YM,Ren XW,Li B.The preliminary division of mineralization stage of hydrothermal sulfide in mid-Atlantic ridge 15°S.Acta Mineralogica Sinica,2013,32(S2):680.(in Chinese)叶俊,石学法,杨耀民,任向文,李兵.大西洋中脊15°S热液硫化物成矿阶段初步划分.矿物学报,2013,32(S2):680.
    [3]Zeng X,Zhang Z,Li X,Jebbar M,Alain K,Shao ZZ.Caloranaerobacter ferrireducens sp.nov.,an anaerobic,thermophilic,iron(III)-reducing bacterium isolated from deep-sea hydrothermal sulfide deposits.International Journal of Systematic and Evolutionary Microbiology,2015,65:1714-1718.
    [4]Lonergan DJ,Jenter HL,Coates JD,Phillips EJ,Schmidt TM,Lovley DR.Phylogenetic analysis of dissimilatory Fe(Ⅲ)-reducing bacteria.Journal of Bacteriology,1996,178(8):2402-2408.
    [5]Kashefi K,Lovley DR.Reduction of Fe(III),Mn(IV),and toxic metals at 100°C by Pyrobaculum islandicum.Applied and Environmental Microbiology,2000,66(3):1050-1056.
    [6]Slobodkina GB,Kolganova TV,Querellou J,Bonch-Osmolovskaya EA,Slobodkin AI.Geoglobus acetivorans sp.nov,an iron(III)-reducing archaeon from a deep-sea hydrothermal vent.International Journal of Systematic and Evolutionary Microbiology,2009,59(11):2880-2883.
    [7]Myers CR,Myers JM.Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1.Journal of Bacteriology,1992,174(11):3429-3438.
    [8]Shi L,Dong HL,Reguera G,Beyenal H,Lu AH,Liu J,Yu HQ,Fredrickson JK.Extracellular electron transfer mechanisms between microorganisms and minerals.Nature Reviews Microbiology,2016,14(10):651-662.
    [9]Nealson KH,Saffarini D.Iron and manganese in anaerobic respiration:environmental significance,physiology,and regulation.Annual Review of Microbiology,1994,48:311-343.
    [10]Nealson KH,Belz A,McKee B.Breathing metals as a way of life:geobiology in action.Antonie van Leeuwenhoek,2002,81(1/4):215-222.
    [11]Lovley DR.Dissimilatory Fe(Ⅲ)and Mn(Ⅳ)reduction.Microbiological Reviews,1991,55(2):259-287.
    [12]Yoon SH,Ha SM,Kwon S,Lim J,Kim Y,Seo H,Chun J.Introducing EzBioCloud:a taxonomically united database of16S rRNA gene sequences and whole-genome assemblies.International Journal of Systematic and Evolutionary Microbiology,2017,67(5):1613-1617.
    [13]Stookey LL.Ferrozine-a new spectrophotometric reagent for iron.Analytical Chemistry,1970,42(7):779-781
    [14]Zhilina TN,Zavarzina DG,Detkova EN,Patutina EO,Kuznetsov BB.Fuchsiella ferrireducens sp.nov.,a novel haloalkaliphilic,lithoautotrophic homoacetogen capable of iron reduction,and emendation of the description of the genus Fuchsiella.International Journal of Systematic and Evolutionary Microbiology,2015,65(8):2432-2440.
    [15]Slobodkina GB,Lebedinsky AV,Chernyh NA,Bonch-Osmolovskaya EA,Slobodkin AI.Pyrobaculum ferrireducens sp.nov.,a hyperthermophilic Fe(III)-,selenateand arsenate-reducing crenarchaeon isolated from a hot spring.International Journal of Systematic and Evolutionary Microbiology,2015,65(3):851-856.
    [16]Falagán C,Foesel B,Johnson B.Acidicapsa ferrireducens sp.nov.,Acidicapsa acidiphila sp.nov.,and Granulicella acidiphila sp.nov.:novel Acidobacteria isolated from metal-rich acidic waters.Extremophiles,2017,21(3):459-469.
    [17]Yang GQ,Guo JH,Zhuang L,Yuan Y,Zhou SG.Desulfotomaculum ferrireducens sp.nov.,a moderately thermophilic sulfate-reducing and dissimilatory Fe(III)-reducing bacterium isolated from compost.International Journal of Systematic and Evolutionary Microbiology,2016,66(8):3022-3028.
    [18]Li X,Zeng X,Zhang Z,Shao ZZ.Characteristics of different iron oxides reduction by a thermophilic dissimilatory iron reducing bacterium Caloranaerobacter ferrireducens DY22619T from deep sea.Acta Oceanologica Sinica,2016,38(8):83-92.(in Chinese)李曦,曾湘,张昭,邵宗泽.深海嗜热异化铁还原菌Caloranaerobacter ferrireducens DY22619T对不同铁氧化物的铁还原特性.海洋学报,2016,38(8):83-92.
    [19]B?uerlein E.Biomineralization:From biology to biotechnology and medical application.Germany:Wiley-VCH,Weinheim,2000.
    [20]Weiner S,Dove PM.An overview of biomineralization processes and the problem of the vital effect.Reviews in Mineralogy and Geochemistry,2003,54(1):1-29.
    [21]Chen ZM.Organic action in the forming process of sedimentary iron ore.Advances in Earth Science,1992,7(6):56-59.(in Chinese)陈志明.沉积铁矿形成过程中的生物作用.地球科学进展,1992,7(6):56-59.
    [22]Zhou SG,Zhou LX,Chen FX.Characterization and heavy metal adsorption properties of schwertmannite synthesized by bacterial oxidation of ferrous sulfate solutions.Spectroscopy and Spectral Analysis,2007,27(2):367-370.(in Chinese)周顺桂,周立祥,陈福星.施氏矿物Schwertmannite的微生物法合成、鉴定及其对重金属的吸附性能.光谱学与光谱分析,2007,27(2):367-370.
    [23]Wang FX,Zheng SL,Qiu H,Cao CQ,Tang X,Hao LK,Liu FH,Li JH.Ferrihydrite reduction and vivianite biomineralization mediated by iron reducing bacterium Shewanella oneidensis MR-4.Acta Microbiologica Sinica,2018,58(4):573-583.(in Chinese)王芙仙,郑世玲,邱浩,曹长乾,唐旭,郝立凯,刘芳华,李金华.铁还原细菌Shewanella oneidensis MR-4诱导水合氧化铁形成蓝铁矿的过程.微生物学报,2018,58(4):573-583.
    [24]Roh Y,Gao HC,Vali H,Kennedy DW,Yang ZK,Gao WM,Dohnalkova AC,Stapleton RD,Moon JW,Phelps TJ,Fredrickson JK,Zhou JZ.Metal reduction and iron biomineralization by a psychrotolerant Fe(III)-reducing bacterium,Shewanella sp.strain PV-4.Applied and Environmental Microbiology,2006,72(5):3236-3244.
    [25]Roh Y,Moon HS.Iron reduction by a psychrotolerant Fe(III)-reducing bacterium isolated from ocean sediment.Geosciences Journal,2001,5(3):183-190.
    [26]Salas EC,Berelson WM,Hammond DE,Kampf AR,Nealson KH.The Impact of Bacterial Strain on the Products of Dissimilatory Iron Reduction.Geochimica et Cosmochimica Acta,2010,74(2):574-583.
    [27]Bazylinski DA,Frankel RB,Konhauser KO.Modes of biomineralization of magnetite by microbes.Geomicrobiology Journal,2007,24(6):465-475.
    [28]Lovley DR,Phillips EJP,Lonergan DJ.Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens.Applied and Environmental Microbiology,1989,55(3):700-706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700