用户名: 密码: 验证码:
环境因素对红壤模拟泥浆体系中紫外光(300~400 nm)降解邻苯二甲酸二丁酯的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of environmental factors on the degradation of di-butyl phthalate (DnBP) in a simulated red soil mud system under UV (300~400 nm) irradiation
  • 作者:帅文娟 ; 方国东 ; 周东美 ; 高娟
  • 英文作者:SHUAI Wen-juan;FANG Guo-dong;ZHOU Dong-mei;GAO Juan;Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences;University of Chinese Academy of Science;
  • 关键词:邻苯二甲酸二丁酯 ; 降解 ; 紫外光 ; 红壤 ; 草酸 ; 柠檬酸
  • 英文关键词:di-butyl phthalate;;degradation;;UV light;;red soil;;oxalic acid;;citric acid
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:中国科学院土壤污染与修复重点实验室中国科学院南京土壤研究所;中国科学院大学;
  • 出版日期:2019-02-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:02
  • 基金:国家重点研究发展计划项目(2017YFA0207001);; 国家自然科学基金项目(41773125);; 中国科学院研究仪器开发计划项目(yz201638)~~
  • 语种:中文;
  • 页:124-131
  • 页数:8
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X53
摘要
土壤pH、硝酸根离子浓度、土壤外源性Cu2+污染、土壤中草酸或柠檬酸浓度等环境因素可能会影响邻苯二甲酸二丁酯(DnBP)在土壤中的化学降解行为,为研究这些环境因素如何影响DnBP的降解,采集江西鹰潭红壤,加入DnBP老化30 d,在光照(300~400 nm)和暗环境下分别研究环境因素对DnBP在土壤泥浆中降解的影响。结果表明:当土壤中目标污染物DnBP浓度为100 mg?kg~(-1)时,在土壤pH为3.5、草酸浓度为50 mmol?L~(-1)的条件下,DnBP降解率为95%。草酸浓度过高或过低均不利于DnBP的降解。柠檬酸对DnBP降解的影响次于草酸。低pH的酸性环境下草酸有利于红壤中DnBP的光降解。以Cu2+污染为例的复合污染,无论在有或无草酸存在的条件下均对DnBP的降解无显著影响。在纯水溶液中,25 mmol?L~(-1)的NO3-有效地利用300~400 nm的紫外光降解DnBP,然而在土壤泥浆中NO3-的存在并不影响DnBP降解。研究表明,在表层红壤接受光照的情况下,有机污染物DnBP可以在红壤中发生光催化降解。
        Di-butyl phthalate(DnBP)is a widely used plasticizer with endocrine-disrupting properties and is presently widely detected in soils. Surface soil absorbs long-wavelength UV irradiation(300~400 nm)that can induce a series of reactions leading to the degradation ofDnBP. Moreover,spatial and/or temporal differences in environmental factors,such as soil pH,nitrate concentration,soil exogenous Cu2+pollution,and soil solution contents of oxalic acid or citric acid,can also influence the nature of DnBP in soils. To date,however,there havebeen few studies that have examined these effects. In this study,soil collected from Yingtan in Jiangxi Province was used to examine DnBPester degradation both in the dark and under UV irradiation,as affected by the aforementioned different environmental factors. In soil witha solution pH of 5.5,oxalic acid concentration of 50 mmol?L~(-1),and initial DnBP concentration of 100 mg?kg~(-1),there was an approximate95% degradation of DnBP. Oxalic acid concentrations higher or lower than 50 mmol?L~(-1) resulted in a lower degradation ratio of DnBP. Theaddition of citric acid to soil was less effective than that of oxalic acid. An acidic environment in the presence of oxalic acid and irradiationwith UV(300~400 nm)light was observed to be beneficial for DnBP degradation. In pure aqueous solutions containing 25 mmol?L~(-1) of theinorganic anion NO-3,DnBP is readily decomposed under UV irradiation. However,in soil suspensions,NO-3 had no effect on the degradation of DnBP. This study verified that organic pollutants such as DnBP can be degraded by chemical reactions occurring in the top layer of soil.
引文
[1]Stringer R,Labunska I,Santillo D,et al.Concentrations of phthalate esters and identification of other additives in PVC children′s toys[J].Environmental Science&Pollution Research,2000,7(1):27-36.
    [2]Koch H M,Christensen K L Y,Harth V,et al,Di-n-butyl phthalate(DnBP)and diisobutyl phthalate(DiBP)metabolism in a human volunteer after single oral doses[J].Archives of Toxicology,2012,86(12):1829.
    [3]Mo C H,Cai Q Y,Li Y H et al.Occurrence of priority organic pollutants in the fertilizers,China[J].Journal of Hazardous Materials,2008,152(3):1208-1213.
    [4]Ito M,Nagai K.Analysis of degradation mechanism of plasticized PVCunder artificial aging conditions[J].Polymer Degradation&Stability,2007,92(2):260-270.
    [5]Zhang Y,Liang Q,Gao R,et al.Contamination of phthalate esters(PAEs)in typical wastewater-irrigated agricultural soils in Hebei,north China[J].PLoS One,2015,10(9):e0137998.
    [6]唐丽霞,左停.中国农村污染状况调查与分析:来自全国141个村的数据[J].中国农村观察,2008(1):31-38.TANG Li-xia,ZUO Ting.Investigation and analysis of pollution situation in rural China:Data from 141 villages in China[J].Rural Observation,2008(1):31-38.
    [7]Chen N,Shuai W,Hao X,et al.Contamination of phthalate esters in vegetable agriculture and human cumulative risk assessment[J].Pedosphere,2017,27(3):439-451.
    [8]李艳,刘洪禄,顾华,等.北京市东南郊灌区土壤和农产品酞酸酯污染风险评估[J].农业工程学报,2017,33(18):203-212.LI Yan,LIU Hong-lu,GU Hua,et al.Assessment of soils and crops of irrigation district located at southeastern suburb contamination risk of PAEs Beijing[J].Transactions of the CSAE,2017,33(18):203-212.
    [9]Tan W,Zhang Y,He X,et al.Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems[J].Scientific Reports,2016,6:31987.
    [10]Carruthers C M,Foster P M.Critical window of male reproductive tract development in rats following gestational exposure to di-n-butyl phthalate[J].Birth Defects Research Part B Developmental&Reproductive Toxicology,2010,74(3):277-285.
    [11]Mccarthy J F,Whitmore D K.Chronic toxicity of di-n-butyl and din-octyl phthalate to Daphnia magna and the fathead minnow[J].Environmental Toxicology&Chemistry,1985,4(2):167-179.
    [12]Shailaja S,Ramakrishna M,Mohan S V,et al.Biodegradation of di-nbutyl phthalate(DnBP)in bioaugmented bioslurry phase reactor[J].Bioresource Technology,2007,98(8):1561-1566.
    [13]Feng N X,Yu J,Mo C H,et al.Biodegradation of di-n-butyl phthalate(DBP)by a novel endophytic Bacillus megaterium strain YJB3[J].Science of the Total Environment,2018,616/617:117-127.
    [14]洪瑞.淹水条件下红壤中五氯酚的降解[D].武汉:华中农业大学,2013.HONG Rui.Degradation of pentachlorophenol in red soil under flooded[D].Wuhan:Huazhong Agricultural University,2013.
    [15]杨俊,徐仁扣.阴离子对As(Ⅲ)在砖红壤与TiO2混合体系中的光催化氧化/吸附的影响[J].环境科学学报,2009,29(2):367-372.YANG Jun,XU Ren-kou.Influence of anions on photocatalytic oxidation and adsorption of As(Ⅲ)on an oxisol with TiO2[J].Acta Scientiae Circumstantiae,2009,29(2):367-372.
    [16]Fang G D,Gao J,Liu C,et al.Key role of persistent free radicals in hydrogen peroxide activation by biochar:Implications to organic contaminant degradation[J].Environmental Science&Technology,2014,48(3):1902-1910.
    [17]Fang G D,Zhu C Y,Dionysiou D D,et al.Mechanism of hydroxyl radical generation from biochar suspensions:Implications to diethyl phthalate degradation[J].Bioresource Technology,2015,176:210-217.
    [18]Lincoln J,Lucas D.Commercial fishing deaths:United States,2000-2009[J].Morbidity&Mortality Weekly Report,2010,59(27):842-845.
    [19]Fox T R,Comerford N B.Low-molecular-weight organic acids in selected forest soils of the southeastern USA[J].Soil Science Society of America Journal,1990,54:1139-1144.
    [20]Benhamouda K,Belaidi S,Sehili T,et al.Catalytic photodegradation of rhodamine B in the presence of natural iron oxide and oxalic acid under artificial and sunlight radiation[J].International Journal of Chemical Reactor Engineering,2017,15(2):1-9.
    [21]Wagner I,Strehlow H,Busse G.Flash photolysis of nitrate ions in aqueous solution[J].Zeitschrift Für Physikalische Chemie,1980,123(1):1-33.
    [22]蔡轩,龙新宪,种云霄,等.无机-有机混合改良剂对酸性重金属复合污染土壤的修复效应[J].环境科学学报,2015,35(12):3991-4002.CAI Xuan,LONG Xin-xian,ZHONG Yun-xiao,et al.Inorganic-organic amendments for immobilization of metal contaminants in an acidic soil[J].Acta Scientiae Circumstantiae,2015,35(12):3991-4002.
    [23]邹佳佳,孟梅,张云,等.农田土壤铜污染评价和油菜铜积累特征研究[J].土壤通报,2015,46(3):621-627.ZOU Jia-jia,MENG Mei,ZHANG Yun,et al.Evaluation of copper pollution status of soil and copper accumulation features of rapes in farmland[J].Soil Bulletin,2015,46(3):621-627.
    [24]邢艳帅,罗婧晗,汪磊.苯并三唑与铜复合污染对赤子爱胜蚓的铜富集和毒性效应研究[C].中国土壤学会土壤环境专业委员会山东省土壤污染防控与修复技术研讨会.2017.XING Yan-shuai,LUO Jing-han,WANG Lei.Study on the copper and benzotriazole enrichment on the toxicity of the Eisenia vermis[C].Soil science society of China,specialized committee,Shandong specialized committee seminar on soil pollution control and remediation technology.2017.
    [25]李见云,侯彦林,化全县,等.大棚设施土壤养分和重金属状况研究[J].土壤2005,37(6):626-629.LI Jian-yun,HOU Yan-lin,HUA Quan-xian,et al.Variation of soil nutrient and heavy metal concentrations in greenhouse soils[J].Soils,2005,37(6):626-629.
    [26]曾路生,高岩,李俊良,等.寿光大棚菜地酸化与土壤养分变化关系研究[J].水土保持学报.2010,24(4):157-161.ZENG Lu-sheng,GAO Yan,LI Jun-liang,et al.Changes of acidification and nutrient accumulation in greenhouse vegetable soils in Shouguang[J].Soil and Water Conservation Information,2010,24(4):157-161.
    [27]Chai C,Cheng H,Wei G,et al.Phthalic acid esters in soils from vegetable greenhouses in Shandong peninsula,east China[J].PLoS One.2014,9(4):e95701.
    [28]Fujihira M,Satoh Y,Osa T.Heterogeneous photocatalytic reactions on semiconductor materials.Ⅲ.Effect of pH and Cu2+ions on the photo-Fenton type reaction[J].Journal of Electroanalytical Chemistry&Interfacial Electrochemistry,1981,126(1/2/3):277-281.
    [29]刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,2000.LIU Guang-song.Soil physico chemical analyses and description of soil profiles[M].Beijing:China Standard Press,2000.
    [30]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.LU Ru-kun.Agrochemical analysis methods of soil[M].Beijing:China Agricultural Science and Technology Press,2000.
    [31]Panias D,Taxiarchou M,Paspaliaris I,et al.Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions[J].Hydrometallurgy,1996,42(2):257-265.
    [32]Shuai W J,Liu C,Fang G D,et al.Nano-α-Fe2O3 enhanced photocatalytic degradation of diethyl phthalate ester by citric acid/UV(300~400?nm):A mechanism study[J].Journal of Photochemistry&Photobiology A:Chemistry,2018,360:78-85.
    [33]Li A,Zhang Z,Li P,et al.Nitrogen dioxide radicals mediated mineralization of perfluorooctanoic acid in aqueous nitrate solution with UVirradiation[J].Chemosphere,2017,188:367-374.
    [34]Seraghni N,Ghoul I,Lemmize I,et al.Use of oxalic acid as inducer in photocatalytic oxidation of cresol red in aqueous solution under natural and artificial light[J].Environmental Technology,2018,39(22):2908-2915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700