用户名: 密码: 验证码:
pH对生物硝化过程动力学抑制及N_2O释放影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Effect of pH on Inhibitory Kinetics of Nitrification Process and Characteristic of N_2O Emission
  • 作者:巩有奎 ; 任丽芳 ; 彭永臻
  • 英文作者:GONG Youkui;REN Lifang;PENG Yongzhen;Department of Architecture Engineering, Yantai Vocational College;National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology,Beijing University of Technology;
  • 关键词:pH ; 氧化还原酶 ; N2O ; 氨氮氧化速率 ; 氧化亚氮产生速率
  • 英文关键词:pH;;reductase;;N2O;;ammonia oxidation rate;;N2O production rate
  • 中文刊名:环境科学与技术
  • 英文刊名:Environmental Science & Technology
  • 机构:烟台职业学院建筑工程系;北京工业大学城镇污水深度处理与资源化利用技术国家工程实验室;
  • 出版日期:2019-07-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金项目(51508008):不同污水生物脱氮工艺中N2O产生量及过程控制;烟职博士科研2018002号
  • 语种:中文;
  • 页:16-21
  • 页数:6
  • CN:42-1245/X
  • ISSN:1003-6504
  • 分类号:X703
摘要
生物硝化过程是导致生物脱氮过程N_2O释放的重要因素。文章利用小试反应器,采用连续进水的方式,考察了不同pH下氨氧化菌(AOB)硝化过程氨氮氧化速率(AOR)和氧化亚氮释放速率(N_2OR)之间的关系。pH影响动力学结果表明,pH=6.5和8.5时,AOB的比耗氧速率(SOUR)分别降至其最大值(SOUR_(max),pH=7.5)的50%。不同氧化还原酶具有不同的最适pH值(pH_(opt)),pH的变化导致硝化过程不同中间产物的积累。其中,一氧化氮还原酶、亚硝态氮还原酶和氧化亚氮还原酶对生物硝化过程中N_2O释放起着重要作用。pH=6.0~7.5之间,AOR和N_2OR随pH的增加而增加,p H=7.5时,其N_2OR和AOR分别达最大值(0.34±0.08)和(16.30±1.25)mgN/(gVSS·h)。此后,随pH的增加而逐渐降低。不同pH下,N_2OR和AOR呈线性关系。AOR增加,为AOB好氧反硝化过程提供了更多的电子,导致更多N_2O释放。
        In wastewater biological nitrogen removal process,nitrifier denitrificaiton by AOB(ammonia oxidising bacteria)was shown to be the major source of N_2O production.By continuous feeding mode,the impact of pH on N_2O production rate(N_2OR)and ammonia oxidation rate(AOR)was investigated in a laboratory batch-scale system with activated sludge for treating domestic wastewater.p H was shown to have a major impact on AOR and N_2OR during nitrification process.The specific oxygen uptake rate(SOUR)of AOB was half of SOUR_(max)(pH=7.5)at pH 6.5 and pH 8.5.The pH optima for each reductase was identical,which may result in different intermediates accumulation during nitrification process.Nitric oxide reductase(NOR),nitrite reductase(NIR)and nitrous oxide reductase(NOS)are of great importance to the net N_2O production during N-conversions.In the investigated pH range(pH=6.0~7.5),the specific AOR and N_2OR increased with the increasing pH to a maximum of(0.34±0.08)and(16.30±1.25)mg N/(gVSS·h)respectively at pH 7.5,and decreased with the increasing pH.Alinear relationship between N_2OR and AOR was observed suggesting that increased ammonium oxidation activity may have promoted the N_2O production by supplying more electrons to the nitrifier denitrification process.
引文
[1] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide(N2O):the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009,326(5949):123-125.
    [2] IPCC Climate Change 2013:the Physical Science Basis[M].Cambridge,UK and New York, NY, USA:Cambridge University Press, 2013.
    [3] Law Y, Ye L, Pan Y, et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2012,367(1593):1265-1277.
    [4] Stefano M, Giaime T, Giovannimatteo E. Evaluation of nitrous oxide gaseous emissions from a partial nitritation reactor operating under different conditions[J]. Desalination and Water Treatment, 2018.
    [5] Kong Q, Wang Z, Niu P, et al. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process[J]. Bioresource Technology, 2016,210:94-100.
    [6] Chen X, Yuan Z, Ni B J. Nitrite accumulation inside sludge flocs significantly influencing nitrous oxide production by ammonium-oxidizing bacteria[J]. Water Research, 2018,143(15):99-108.
    [7] Caranto JD, Lancaster KM. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase[J]. PNAS, 2017,114(31):8217-8222.
    [8] Soliman M, Eldyasti A. Ammonia-oxidizing bacteria(AOB):opportunities and applications-a review[J]. Reviews in Environmental Science and Bio/Technology, 2018.
    [9] Yang Q, Liu X H, Peng C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater:main sources and control method[J]. Environmental Science and Technology, 2009,43(24):9400-9406.
    [10] Poughon L, Dussap C G, Gros J B. Energy model and metabolic flux analysis for autotrophic nitrifiers[J]. Biotechnology and Bioengineering, 2001,72(4):416-433.
    [11] Stuven R, Vollmer M, Bock E. The impact of organic-matter on nitric-oxide formation by nitrosomonas-europaea[J].Archives of Microbiology, 1992,158(6):439-443.
    [12] Kampschreur M J, Temmink H, Kleerebezem R. Nitrous oxide emission during wastewater treatment[J]. Water Research, 2009,43(17):4093-4103.
    [13] Wang Y Y, Zhou S, Ye L. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long term nitrite/nitrate-fed sequencing batch reactors[J].Water Research, 2014,67(15):33-45.
    [14] Jiménez E, Giménez JB, Seco A. Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate[J]. Bioresource Technology, 2012,124:478–484.
    [15] Van Hulle, Volcke S, López J E, et al. Influence of temperature and pH on the kinetics of the SHARON nitritation process[J]. Journal of Chemical Technology and Biotechnology, 2007,82(5):471–480.
    [16] Moussa MS, Hooijmans CM, Lubberding HJ, et al. Modelling nitrification, heterotrophic growth and predation in activated sludge[J]. Water Research, 2005,39(20):5080–5098.
    [17] Kampschreur M J, van der Star W R L, Wielders H A, et al.Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment[J]. Water Research, 2008,42(3):812-826.
    [18] APHA(American Public Health Association). Standard Methods for the Examination of Water and Wastewater[M]. Baltimore:Port City Press, 1998.
    [19] Wrage N, Velthof G, van Beusichem, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology and Biochemistry, 2001,33(12/13):1723–1732.
    [20] Kozlowski JA, Stieglmeier M, Schleper C, et al. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota[J]. The ISME Journal, 2016,10:1836–1845.
    [21] Caranto JD, Vilbert AC, Lancaster KM. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission[J]. PNAS, 2016,113(51):14704–14709.
    [22] Claros J, Jimenez E, Aguado D, et al. Effect of pH and HNO2concentration on the activity of ammonia-oxidizing bacteria in a partial nitritation reactor[J]. Water Science&Technology, 2013,67(11):2587-2594.
    [23] Daalkhaijav U, Nemati M. Ammonia loading rate:an effective variable to control partial nitrification and generate the anaerobic ammonium oxidation influent[J]. Environmental Technology, 2014,35(5/6/7/8):523–531.
    [24] Blum JM, Su Q, Ma Y. The pH dependency of N-converting enzymatic processes, pathways and microbes:effect on net N2O production[J]. Environmental Microbiology, 2018,20(5):1623–1640.
    [25] Stein LY. Surveying N2O-producing pathways in bacteria[J]. Methods in Enzymology, 2011,486:131–152.
    [26] Kim S W, Fushinobu S, Zhou S, et al. Eukaryotic nirK genes encoding coppercontaining nitrite reductase:originating from the protomitochondrion[J]. Applied and Environmental Microbiology, 2009,75(9):2652–2658.
    [27] Hooper AB, Tran M, Balny C. Kinetics of reduction by substrate or dithionite and heme-heme electron transfer in the multiheme hydroxylamine oxidoreductase[J]. European Journal of Biochemisty, 1984,141(3):565–571.
    [28] Fujita K, Dooley DM. Insights into the mechanism of N2O reduction by reductively activated N2O reductase from kinetics and spectroscopic studies of pH effects[J]. Inorganic Chemistry, 2007,46(3):613–615.
    [29] Kampschreur M J, van der Star W R L, Wielders H A, et al.Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment[J]. Water Research, 2008,42(3):812-826.
    [30] Kampschreur M J, Temmink H, Kleerebezem R, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research, 2009,43(17):4093-4103.
    [31] Law Y, Lant P, Yuan Z. The effect of pH on N2O production under aerobic conditions in a partial nitritation system[J].Water Research, 2011,45(18):5934–5944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700