用户名: 密码: 验证码:
海南岛宽额鳢(Channa gachua)群体遗传变异与生物地理过程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genetic variation and phylogeography of Channa gachua in Hainan Island
  • 作者:陈佳琪 ; 李潮 ; 张雯君 ; 李炜 ; 高天扬 ; 赵俊
  • 英文作者:CHEN Jiaqi;LI Chao;ZHANG Wenjun;LI Wei;GAO Tianyang;ZHAO Jun;Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-friendly Aquaculture, School of Life Science, South China Normal University;
  • 关键词:海南岛 ; 云南元江(红河) ; 宽额鳢 ; 细胞色素b基因 ; 遗传多样性 ; 种群历史动态 ; 生物地理过程
  • 英文关键词:Hainan Island;;Red River;;Channa gachua;;Cytochrome b gene;;genetic diversity;;demographic history;;phylogeography processes
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:广州市亚热带生物多样性与环境生物监测重点实验室广东省水产健康安全养殖重点实验室广东省水产优质环保养殖工程技术研究中心华南师范大学生命科学学院;
  • 出版日期:2019-01-10 09:11
  • 出版单位:生态学报
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金项目(31772430);; 国家科技基础条件平台工作重点项目(2005DKA21402)
  • 语种:中文;
  • 页:329-340
  • 页数:12
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S917.4
摘要
为了解海南岛宽额鳢(Channa gachua)的群体遗传分化和亲缘生物地理过程,采集了云南元江和海南岛5个水系(昌化江、陵水河、藤桥河、万泉河及南渡江)共6个种群168个宽额鳢个体,基于线粒体细胞色素b(Cyt b)基因全序列(1142 bp)对其遗传多样性和遗传分化程度进行了评估,并探讨了地质和气候等因素如何塑造了这一物种的亲缘地理结构及演化历史。基于Cyt b序列构建的系统树结果将所有个体分成两个主要谱系(A和B),谱系A包括海南岛所有种群,其中,部分昌化江个体形成独立的亚支(A2),其余个体聚为另一亚支(A1),谱系B为云南元江的全部个体,各谱系间的遗传分化指数均较高。种群历史动态分析表明,各谱系均没有发生种群扩张,但A1亚支与谱系B曾在约1万年前发生过有效种群数量减小的事件。根据研究结果推测,更新世冰期期间,北部湾因海平面下降而暴露,大陆和海南岛的水系发生接触,越南北部水系(包括元江/红河)通过一条联系雷州半岛和海南岛的古河道流入南海,因而冰期期间宽额鳢有机会从元江(红河)扩散至海南岛西南部,随后在海南岛内部,宽额鳢进一步扩散,并以五指山为种群间基因交流的重要地理障碍,各水系间种群发生基因交流和遗传分化。
        The small air-breathing fish, Channa gachua, is distributed in the shallow regions of the streams and rivers of Yunnan Province and Hainan Island in China. At present, there are limited studies on the genetic differentiation and phylogeography of C. gachua. To understand the genetic diversity of C. gachua and determine how the geological events and climatic changes have influenced the phylogeographic structures and evolutionary history of this species, 168 specimens were collected from 6 populations in 6 drainages(Changhua, Lingshui, Tengqiao, Wanquan, Nandu, and Red rivers) in Hainan Island and Yunnan province, using the mitochondrial DNA cytochrome b gene(1142 bp) as a molecular marker. The phylogenetic tree showed two major lineages(A and B). Lineage A included all samples from Hainan Island. Among them, some samples of the Changhua River fell into an independent subclade(A2), and the remaining samples were clustered into another subclade(A1); Lineage B contained all samples from the Red River. The genetic differentiation index of C. gachua among the different lineages was high. The demographic history indicated that the total populations, lineage A1, A2, and B have not undergone recent expansion. Bayesian skyline plots showed that the effective population size of lineage A1 and B declined at 0.01 millions of years ago. According to our research, during Pleistocene glaciations, the Gulf of Tonkin was exposed owing to a drop in sea level. The drainages in the mainland and Hainan Island were in contact. Drainages in northern Vietnam(including the Red River) flowed into the South China Sea by a paleochannel connecting the Leizhou Peninsula and Hainan Island. At this time, the exposure of the Gulf of Tonkin gave C. gachua a chance for population dispersion between the Red River and southwestern Hainan Island drainage, and subsequently enhanced gene flow between populations in the Hainan Island drainages.
引文
[1] 曾昭璇,曾宪中.海南岛自然地理.北京:科学出版社,1989:60- 110.
    [2] 赵焕庭,王丽荣,袁家义.琼州海峡成因与时代.海洋地质与第四纪地质,2007,27(2):33- 40.
    [3] Voris H K.Maps of Pleistocene sea levels in Southeast Asia:shorelines,river systems and time durations.Journal of Biogeography,2000,27(5):1153- 1167.
    [4] 施雅风.中国第四纪冰期划分改进建议.冰川冻土,2002,24(6):687- 692.
    [5] Zhou T Q,Lin H D,Hsu K C,Kuo P H,Wang W K,Tang W Q,Liu D,Yang J Q.Spatial genetic structure of the cyprinid fish Onychostoma lepturum on Hainan Island.Mitochondrial DNA.Part A:DNA Mapping,Sequencing,and Analysis,2017,28(6):901- 908.
    [6] Yang J Q,Hsu K C,Liu Z Z,Su L W,Kuo P H,Tang W Q,Zhou Z C,Liu D,Bao B L,Lin H D.The population history of Garra orientalis (Teleostei:Cyprinidae) using mitochondrial DNA and microsatellite data with approximate Bayesian computation.BMC Evolutionary Biology,2016,16:73.
    [7] 左艳玲,林岳光,梁晓旭,马天峰,庆宁.基于mtDNA控制区序列的拟平鳅遗传变异和种群分化.水产学报,2009,33(6):925- 931.
    [8] 莫宴情,施央申.海南岛地体及其毗邻陆缘晚中生代-新生代古地磁研究和构造演化.南京大学学报,1987,23(3):521- 532.
    [9] 梁光河.海南岛从中国北部湾分离旋转漂移出去的8大证据.地质学报,2013,87(S1):73- 76.
    [10] Rangin C,Klein M,Roques D,Pichon X L,Van Trong L.The Red River fault system in the Tonkin Gulf,Vietnam.Tectonophysics,1995,243(3/4):209- 222.
    [11] Liu Y Y,Morinaga H.Cretaceous palaeomagnetic results from Hainan Island in South China supporting the extrusion model of Southeast Asia.Tectonophysics,1999,301(1/2):133- 144.
    [12] 中国水产科学研究院珠江水产研究所,上海水产大学,中国水产科学研究院东海水产研究所,广东省水产学校.海南岛淡水及河口鱼类志.广州:广东科技出版社,1986.
    [13] 褚新洛,陈银瑞.云南鱼类志:下册.北京:科学出版社,1990:267- 268.
    [14] Kawade S J,Khillare Y K.Toxicity of Zinc on the biochemical contents of certain tissues of freshwater fish,Channa gachua (Ham.).International Journal of Applied Biology and Pharmaceutical Technology,2012,3(3):242- 251.
    [15] Waghmare S Y.Confidor and Bavistin induced effects on total glycogen content in liver and gonads of Snakeheaded Fish,Channa gachua.The Pharma Innovation Journal,2017,6(4):41- 43.
    [16] Ghanbahadur A G,Ghanbahadur G R,Ganeshwade R,Khillare Y K.Study of gonadosomatic index of fresh water fish Channa gachua.Science Research Reporter,2013,3(1):7-8.
    [17] James M,Bhat A A,Haniffa M A,Hussain S A,Rather I A,Al-Anazi K M,Hailan W A Q,Farah M A.Ovarian development and histological observations of threatened dwarf snakehead fish,Channa gachua (Hamilton,1822).Saudi Journal of Biological Sciences,2018,25(1):149- 153.
    [18] 王金星,周才武.我国五种鳢科鱼类的染色体组型研究.海洋湖沼通报,1986,(1):47- 52.
    [19] 王金星,周才武.中国鳢科鱼类的乳酸脱氢酶和酯酶同工酶的比较研究.海洋与湖沼,1987,18(1):64- 69.
    [20] Serrao N R,Steinke D,Hanner R H.Calibrating snakehead diversity with DNA barcodes:expanding taxonomic coverage to enable identification of potential and established invasive species.PLoS One,2014,9(6):e99546.
    [21] Dahruddin H,Hutama A,Busson F,Sauri S,Hanner R,Keith P,Hadiaty R,Hubert N.Revisiting the ichthyodiversity of Java and Bali through DNA barcodes:taxonomic coverage,identification accuracy,cryptic diversity and identification of exotic species.Molecular Ecology Resources,2017,17(2):288- 299.
    [22] Marmi J,López-Giráldez F,Macdonald D W,Calafell F,Zholnerovskaya E,Domingo-Roura X.Mitochondrial DNA reveals a strong phylogeographic structure in the badger across Eurasia.Molecular Ecology,2006,15(4):1007- 1020.
    [23] 薛丹,章群,郜星晨,宫亚运,曹艳.基于线粒体控制区的云南澜沧江和海南岛主要水系宽额鳢遗传变异分析.水生生物学报,2015,39(6):1107- 1116.
    [24] Zardoya R Z,Meyer A.Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates.Molecular Biology and Evolution,1996,13(7):933- 942.
    [25] Xiao W H,Zhang Y P,Liu H Z.Molecular systematics of Xenocyprinae (Teleostei:Cyprinidae):taxonomy,biogeography,and coevolution of a special group restricted in East Asia.Molecular Phylogenetics and Evolution,2001,18(2):163- 173.
    [26] Kumar S,Stecher G,Tamura K.MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets.Molecular Biology and Evolution,2016,33(7):1870- 1874.
    [27] Nei M,Tajima F.Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data.Genetics,1983,105(1):207- 217.
    [28] Buhay J E,Crandall K A.Subterranean phylogeography of freshwater crayfishes shows extensive gene flow and surprisingly large population sizes.Molecular Ecology,2005,14(14):4259- 4273.
    [29] Templeton A R.The ‘Eve’ hypotheses:a genetic critique and reanalysis.American Anthropologist,1993,95(1):51- 72.
    [30] Lefort V,Longueville J E,Gascuel O.SMS:smart model selection in PhyML.Molecular Biology and Evolution,2017,34(9):2422- 2424.
    [31] Excoffier L,Lischer H E L.Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows.Molecular Ecology Resources,2010,10(3):564- 567.
    [32] 王太,杜岩岩,杨濯羽,张艳萍,娄忠玉,焦文龙.基于线粒体控制区的嘉陵裸裂尻鱼种群遗传结构分析.生态学报,2017,37(22):7741- 7749.
    [33] Grant W A S,Bowen B W.Shallow population histories in deep evolutionary lineages of marine fishes:insights from sardines and anchovies and lessons for conservation.Journal of Heredity,1998,89(5):415- 426.
    [34] Habib M,Lakra W S,Mohindra V,Khare P,Barman A S,Singh A,Lal K K,Punia P,Khan A A.Evaluation of cytochrome b mtDNA sequences in genetic diversity studies of Channa marulius (Channidae:Perciformes).Molecular Biology Reports,2011,38(2):841- 846.
    [35] Rahim M H A,Ismail P,Alias R,Muhammad N,Jais A M M.PCR-RFLP analysis of mitochondrial DNA cytochrome b gene among Haruan (Channa striatus) in Malaysia.Gene,2012,494(1):1- 10.
    [36] Baisvar V S,Kumar R,Singh M,Singh A K,Chauhan U K,Mishra A K,Kushwaha B.Genetic diversity analyses for population structuring in Channa striata using mitochondrial and microsatellite DNA regions with implication to their conservation in Indian waters.Meta Gene,2018,16:28- 38.
    [37] Chen X L,Chiang T Y,Lin H D,Zheng H S,Shao K T,Zhang Q,Hsu K C.Mitochondrial DNA phylogeography of Glyptothorax fokiensis and Glyptothorax hainanensis in Asia.Journal of Fish Biology,2007,70(SA):75- 93.
    [38] Yang J Q,Hsu K C,Kuo P H,Li L L,Tang W Q,Liu D,Lin H D.Mitochondrial and nuclear genetic structure in Rhodeus ocellatus (Teleostei:Cyprinidae) with approximate Bayesian computation.Environmental Biology of Fishes,2018,101(5):829- 841.
    [39] De Silva K H G M.Population ecology of the paddy field-dwelling fish Channa gachua (Günther) (Perciformes,Channidae) in Sri Lanka.Journal of Fish Biology,1991,38(4):497- 508.
    [40] Adamson E A S,Hurwood D A,Baker A M,Mather P B.Population subdivision in Siamese mud carp Henicorhynchus siamensis in the Mekong River basin:implications for management.Journal of Fish Biology,2009,75(6):1371- 1392.
    [41] Takagi A P,Ishikawa S,Nao T,Song S L,Hort S,Thammavong K,Saphakdy B,Phomsouvanhm A,Nishida M,Kurokura H.Genetic differentiation of Macrognathus siamensis within the Mekong River between Laos and Cambodia.Journal of Applied Ichthyology,2011,27(5):1150- 1154.
    [42] Adamson E A S,Hurwood D A,Mather P B.Insights into historical drainage evolution based on the phylogeography of the chevron snakehead fish (Channa striata) in the Mekong Basin.Freshwater Biology,2012,57(11):2211- 2229.
    [43] Chen W T,Zhong Z X,Dai W,Fan Q,He S P.Phylogeographic structure,cryptic speciation and demographic history of the sharpbelly (Hemiculter leucisculus),a freshwater habitat generalist from southern China.BMC Evolutionary Biology,2017,17:216.
    [44] Rissler L J.Union of phylogeography and landscape genetics.Proceedings of the National Academy of Sciences of the United States of America,2016,113(29):8079- 8086.
    [45] He D K,Chen Y F.Biogeography and molecular phylogeny of the genus Schizothorax (Teleostei:Cyprinidae) in China inferred from cytochrome b sequences.Journal of Biogeography,2006,33(8):1448- 1460.
    [46] Yang L,Mayden R L,He S P.Population genetic structure and geographical differentiation of the Chinese catfish Hemibagrus macropterus (Siluriformes,Bagridae):evidence for altered drainage patterns.Molecular Phylogenetics and Evolution,2009,51(2):405- 411.
    [47] Lin L H,Ji X,Diong C H,Du Y,Lin C X.Phylogeography and population structure of the Reevese′s Butterfly Lizard (Leiolepis reevesii) inferred from mitochondrial DNA sequences.Molecular Phylogenetics and Evolution,2010,56(2):601- 607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700